scholarly journals Enterococcus hirae bacteremia associated with acute pyelonephritis in a patient with alcoholic cirrhosis: a case report and literature review

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tomoaki Nakamura ◽  
Kazuhiro Ishikawa ◽  
Takahiro Matsuo ◽  
Fujimi Kawai ◽  
Yuki Uehara ◽  
...  

Abstract Background Infections caused by Enterococcus hirae are common in animals, with instances of transmission to humans being rare. Further, few cases have been reported in humans because of the difficulty in identifying the bacteria. Herein, we report a case of pyelonephritis caused by E. hirae bacteremia and conduct a literature review on E. hirae bacteremia. Case presentation A 57-year-old male patient with alcoholic cirrhosis and neurogenic bladder presented with fever and chills that had persisted for 3 days. Physical examination revealed tenderness of the right costovertebral angle. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) of the patient’s blood and urine samples revealed the presence of E. hirae, and pyelonephritis was diagnosed. The patient was treated successfully with intravenous ampicillin followed by oral linezolid for a total of three weeks. Conclusion The literature review we conducted revealed that E. hirae bacteremia is frequently reported in urinary tract infections, biliary tract infections, and infective endocarditis and is more likely to occur in patients with diabetes, liver cirrhosis, and chronic kidney disease. However, mortality is not common because of the high antimicrobial susceptibility of E. hirae. With the advancements in MALDI-TOF MS, the number of reports of E. hirae infections has also increased, and clinicians need to consider E. hirae as a possible causative pathogen of urinary tract infections in patients with known risk factors.

2011 ◽  
Vol 35 (4) ◽  
pp. ---
Author(s):  
Sören Schubert ◽  
Andreas Wieser

Abstract Very recently a novel method for differentiation of bacteria and fungi was developed, that is, identification by means of matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS). This differentiation relies on the exact measurement of species-specific protein spectra of ribosomal proteins. It is at least as accurate as conventional biochemical differentiation methods, but provides results within minutes. In addition to differentiation of bacteria and yeasts grown on agar plates, direct identification is feasible from positive blood cultures as well as from urine samples of patients suffering from urinary tract infections. Future developments of MALDI-TOF MS for clinical microbiological purposes include the detection of β-lactamase and carbapenemase activity as well as genotyping of bacteria below the species level.


2020 ◽  
Vol 7 (9) ◽  
Author(s):  
Tingting Li ◽  
Ying Huang ◽  
Xianguo Chen ◽  
Zhongxin Wang ◽  
Yuanhong Xu

Abstract Trichosporon spp. are emerging opportunistic agents that cause systemic diseases and life-threatening disseminated disease in immunocompromised hosts. Trichosporon japonicum is a highly rare cause of invasive trichosporonosis. In this study, we describe 2 cases of urinary tract infection caused by Trichosporon japonicum in kidney transplant patients. Culturing of urine samples yielded bluish-green colonies of T. japonicum on Candida chromogenic fungal medium. The isolates were identified as T. japonicum by matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI TOF-MS; Autof MS 1000). The identification of T. japonicum was further confirmed by 18S rRNA gene sequencing. In vitro drug susceptibility testing showed that the 2 strains of T. japonicum were resistant to 5-flucytosine, fluconazole, and caspofungin, with dose-dependent sensitivity to itraconazole and voriconazole but sensitivity to amphotericin B. The homology of the 2 T. japonicum strains, as determined by cluster analysis and principal component analysis of MALDI-TOF MS, was ~85%, suggesting a common nosocomial origin. The first 2 case reports of fluconazole-resistant T. japonicum urinary infection in kidney transplant recipients are presented.


2020 ◽  
Vol 8 (3) ◽  
pp. 381 ◽  
Author(s):  
Kelvin H. Y. Chiu ◽  
Rex P. K. Lam ◽  
Elaine Chan ◽  
Susanna K. P. Lau ◽  
Patrick C. Y. Woo

We analyzed the incidence and the clinical and laboratory characteristics of Staphylococcus lugdunensis urinary tract infections (UTIs) during a 10-year period (2009–2018) and compared them with those of Staphylococcus saprophyticus UTIs. A total of 38 and 162 episodes of S. lugdunensis and S. saprophyticus UTIs were observed. The number of S. saprophyticus UTIs was stable throughout the 10 years, whereas there was an obvious surge in the apparent number of S. lugdunensis UTIs since 2014, coinciding with the commencement of a routine use of MALDI-TOF MS. Univariate analysis showed that male sex (p < 0.001), advanced age (p < 0.001), hospital-acquired infections, (p < 0.001), upper UTI (p < 0.005), polymicrobial infections (p < 0.05), hypertension (p < 0.001), solid-organ malignancies (p < 0.001), renal stones (p < 0.001), urinary stricture (p < 0.05), vesicoureteral reflux (p < 0.001), and presence of a urinary catheter (p < 0.001) were significantly associated with S. lugdunensis UTI. Multivariable analysis revealed that S. lugdunensis UTI was associated with male sex (OR = 6.08, p < 0.05), solid-organ malignancies (OR = 12.27, p < 0.01), and urological system abnormalities (OR = 7.44, p < 0.05). There were significant differences in the patient population affected and predisposing factors between S. lugdunensis and S. saprophyticus UTIs.


Author(s):  
Daniel Esquivel-Alvarado ◽  
Emilia Alfaro-Viquez ◽  
Christian G Krueger ◽  
Martha M Vestling ◽  
Jess D Reed

Abstract Background Cranberry proanthocyanidins (c-PAC) are oligomeric structures of flavan-3-ol units, which possess A-type interflavan bonds. c-PAC differs from other botanical sources because other PAC mostly have B-type interflavan bonds. Cranberry products used to alleviate and prevent urinary tract infections may suffer from adulteration, where c-PAC are replaced with less expensive botanical sources of PAC that contain B-type interflavan bonds. Objective Identifying the presence of A-type interflavan bonds in cranberry fruit and dietary supplements. Methods Thirty-five samples reported to contain A-type PAC (cranberry fruit and cranberry products) and 36 samples reported to contain B-type PAC (other botanical sources) were identified and differentiated using MALDI-TOF MS, deconvolution of overlapping isotope patterns, and principal component analysis (PCA). Results Our results show that both MALDI-TOF MS and deconvolution of overlapping isotope patterns were able to identify the presence of A-type interflavan bonds with a probability greater than 90% and a confidence of 95%. Deconvolution of MALDI-TOF MS spectra also determined the ratio of A-type to B-type interflavan bonds at each degree of polymerization in cranberry fruit and cranberry products, which is a distinguishing feature of c-PAC in comparison to other botanical sources of PAC. PCA shows clear differences based on the nature of the interflavan bonds. Conclusions MALDI-TOF MS, deconvolution of overlapping isotope patterns of MALDI-TOF MS spectra, and PCA allow the identification, estimation, and differentiation of A-type interflavan bonds in cranberry-based foods and dietary supplements among other botanical sources containing mostly B-type interflavan bonds.


2015 ◽  
Vol 30 (1) ◽  
Author(s):  
Valentina Felice ◽  
Massimiliano Scutellà ◽  
Silvia Lombardi

<em>Background</em> <em>and</em> <em>Aims</em>. <em>Actinobaculum</em> <em>schaalii</em> is a facultative anaerobic, Gram-positive rod-shaped species phylogenetically related to Actinomyces. <em>A</em>. <em>schaalii</em> is an emerging pathogen causing urinary tract infections (UTI) in both children and adults; although, as part of the human genitourinary tract flora, it is frequently overlooked or considered as a contaminant. While the phenotypic identification of <em>A</em>. <em>schaalii</em> is difficult, the recent Matrix-Assisted Laser Desorption/Ionisation Time-Of-Flight-mass spectrometry (MALDI TOF) technology could represent a promising tool for its identification. <br /><em>Materials</em> <em>and</em> <em>Methods</em>. This is a retrospective study including all known cases (n=7) of <em>A</em>. <em>schaalii</em> infections occurred (between July 2013 and November 2013) at the Microbiology Laboratory of the A. Cardarelli Hospital, in Campobasso (Italy). <br /><em>Results</em>. All the 7 <em>A.</em> <em>schaalii</em> collected strains, resulted <em>in</em> <em>vitro</em> susceptible to most of the drugs commonly used for urinary tract infections, but resistant to ciprofloxacin, a first-line antibiotic in the treatment of prostatitis. All isolates were susceptible to amoxicillin, amoxicillin-clavulanic, ampicillin-sulbactam, cefuroxime, gentamicin, piperacillin-tazobactam, vancomicin, tetracycline (no EUCAST breakpoints). All except two isolates were susceptible to cefotaxime; 3/7 and 5/7 strains were clindamicin and levofloxacin resistant, respectively. <br /><em>Conclusions</em>. As most antibiotics empirically prescribed for UTI (mainly fluoroquinolones or trimethoprim/sulfamethoxazole) are not effective against <em>A</em>. <em>schaalii</em>, the appropriate onset of treatment was delayed by an average of 2.8 days. The implementation of the newer MALDI TOF technology in routine diagnostic procedures may allow a more reliable and rapid identification of <em>A</em>. <em>schaalii</em> in future.


2020 ◽  
Vol 58 (10) ◽  
pp. 1759-1767
Author(s):  
Mieke Steenbeke ◽  
Sander De Bruyne ◽  
Jerina Boelens ◽  
Matthijs Oyaert ◽  
Griet Glorieux ◽  
...  

AbstractObjectivesIn this study, the possibilities of Fourier-transformed infrared spectroscopy (FTIR) for analysis of urine sediments and for detection of bacteria causing urinary tract infections (UTIs) were investigated.MethodsDried urine specimens of control subjects and patients presenting with various nephrological and urological conditions were analysed using mid-infrared spectroscopy (4,000–400 cm−1). Urine samples from patients with a UTI were inoculated on a blood agar plate. After drying of the pure bacterial colonies, FTIR was applied and compared with the results obtained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Chemometric data analysis was used to classify the different species.ResultsDue to the typical molecular assignments of lipids, proteins, nucleic acids and carbohydrates, FTIR was able to identify bacteria and showed promising results in the detection of proteins, lipids, white and red blood cells, as well as in the identification of crystals. Principal component analysis (PCA) allowed to differentiate between Gram-negative and Gram-positive species and soft independent modelling of class analogy (SIMCA) revealed promising classification ratios between the different pathogens.ConclusionsFTIR can be considered as a supplementary method for urine sediment examination and for detection of pathogenic bacteria in UTI.


2014 ◽  
Vol 63 (9) ◽  
pp. 1143-1147 ◽  
Author(s):  
Katherine Woods ◽  
David Beighton ◽  
John L. Klein

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) provides rapid, accurate and cost-effective identification of a range of bacteria and is rapidly changing the face of routine diagnostic microbiology. However, certain groups of bacteria, for example streptococci (in particular viridans or non-haemolytic streptococci), are less reliably identified by this method. We studied the performance of MALDI-TOF MS for identification of the ‘Streptococcus anginosus group’ (SAG) to species level. In total, 116 stored bacteraemia isolates identified by conventional methods as belonging to the SAG were analysed by MALDI-TOF MS. Partial 16S rRNA gene sequencing, supplemented with sialidase activity testing, was performed on all isolates to provide ‘gold standard’ identification against which to compare MALDI-TOF MS performance. Overall, 100 % of isolates were correctly identified to the genus level and 93.1 % to the species level by MALDI-TOF MS. However, only 77.6 % were correctly identified to the genus level and 59.5 % to the species level by a MALDI-TOF MS direct transfer method alone. Use of a rapid in situ extraction method significantly improved identification rates when compared with the direct transfer method (P<0.001). We recommend routine use of this method to reduce the number of time-consuming full extractions required for identification of this group of bacteria by MALDI-TOF MS in the routine diagnostic laboratory. Only 22 % (1/9) of Streptococcus intermedius isolates were reliably identified by MALDI-TOF MS to the species level, even after full extraction. MALDI-TOF MS reliably identifies S. anginosus and Streptococcus constellatus to the species level but does not reliably identify S. intermedius.


2021 ◽  
Vol 9 (3) ◽  
pp. 661
Author(s):  
Adriana Calderaro ◽  
Mirko Buttrini ◽  
Monica Martinelli ◽  
Benedetta Farina ◽  
Tiziano Moro ◽  
...  

Typing methods are needed for epidemiological tracking of new emerging and hypervirulent strains because of the growing incidence, severity and mortality of Clostridioides difficile infections (CDI). The aim of this study was the evaluation of a typing Matrix-Assisted Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS (T-MALDI)) method for the rapid classification of the circulating C. difficile strains in comparison with polymerase chain reaction (PCR)-ribotyping results. Among 95 C. difficile strains, 10 ribotypes (PR1–PR10) were identified by PCR-ribotyping. In particular, 93.7% of the isolates (89/95) were grouped in five ribotypes (PR1–PR5). For T-MALDI, two classifying algorithm models (CAM) were tested: the first CAM involved all 10 ribotypes whereas the second one only the PR1–PR5 ribotypes. Better performance was obtained using the second CAM: recognition capability of 100%, cross-validation of 96.6% and agreement of 98.4% (60 correctly typed strains, limited to PR1–PR5 classification, out of 61 examined strains) with PCR-ribotyping results. T-MALDI seems to represent an alternative to PCR-ribotyping in terms of reproducibility, set up time and costs, as well as a useful tool in epidemiological investigation for the detection of C. difficile clusters (either among CAM included ribotypes or out-of-CAM ribotypes) involved in outbreaks.


2016 ◽  
Vol 10 (1) ◽  
pp. 202-208 ◽  
Author(s):  
Marisa Almuzara ◽  
Claudia Barberis ◽  
Viviana Rojas Velázquez ◽  
Maria Soledad Ramirez ◽  
Angela Famiglietti ◽  
...  

Objective:To evaluate the performance of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) by using 190 Catalase-negative Gram-Positive Cocci (GPC) clinical isolates.Methods:All isolates were identified by conventional phenotypic tests following the proposed scheme by Ruoff and Christensen and MALDI-TOF MS (Bruker Daltonics, BD, Bremen, Germany). Two different extraction methods (direct transfer formic acid method on spot and ethanol formic acid extraction method) and different cut-offs for genus/specie level identification were used. The score cut-offs recommended by the manufacturer (≥ 2.000 for species-level, 1.700 to 1.999 for genus level and <1.700 no reliable identification) and lower cut-off scores (≥1.500 for genus level, ≥ 1.700 for species-level and score <1.500 no reliable identification) were considered for identification. A minimum difference of 10% between the top and next closest score was required for a different genus or species.MALDI-TOF MS identification was considered correct when the result obtained from MS database agreed with the phenotypic identification result.When both methods gave discordant results, the 16S rDNA orsodAgenes sequencing was considered as the gold standard identification method. The results obtained by MS concordant with genes sequencing, although discordant with conventional phenotyping, were considered correct. MS results discordant with 16S orsodA identification were considered incorrect.Results:Using the score cut-offs recommended by the manufacturer, 97.37% and 81.05% were correctly identified to genus and species level, respectively. On the other hand, using lower cut-off scores for identification, 97.89% and 94.21% isolates were correctly identified to genus and species level respectively by MALDI-TOF MS and no significant differences between the results obtained with two extraction methods were obtained.Conclusion:The results obtained suggest that MALDI-TOF MS has the potential of being an accurate tool for Catalase-negative GPC identification even for those species with difficult diagnosis asHelcococcus,Abiotrophia,Granulicatella, among others. Nevertheless, expansion of the library, especially including more strains with different spectra on the same species might overcome potential “intraspecies” variability problems. Moreover, a decrease of the identification scores for species and genus-level identification must be considered since it may improve the MALDI-TOF MS accuracy.


Sign in / Sign up

Export Citation Format

Share Document