scholarly journals Emergence of Staphylococcus lugdunensis as a Cause of Urinary Tract Infection: Results of the Routine Use of MALDI-TOF MS

2020 ◽  
Vol 8 (3) ◽  
pp. 381 ◽  
Author(s):  
Kelvin H. Y. Chiu ◽  
Rex P. K. Lam ◽  
Elaine Chan ◽  
Susanna K. P. Lau ◽  
Patrick C. Y. Woo

We analyzed the incidence and the clinical and laboratory characteristics of Staphylococcus lugdunensis urinary tract infections (UTIs) during a 10-year period (2009–2018) and compared them with those of Staphylococcus saprophyticus UTIs. A total of 38 and 162 episodes of S. lugdunensis and S. saprophyticus UTIs were observed. The number of S. saprophyticus UTIs was stable throughout the 10 years, whereas there was an obvious surge in the apparent number of S. lugdunensis UTIs since 2014, coinciding with the commencement of a routine use of MALDI-TOF MS. Univariate analysis showed that male sex (p < 0.001), advanced age (p < 0.001), hospital-acquired infections, (p < 0.001), upper UTI (p < 0.005), polymicrobial infections (p < 0.05), hypertension (p < 0.001), solid-organ malignancies (p < 0.001), renal stones (p < 0.001), urinary stricture (p < 0.05), vesicoureteral reflux (p < 0.001), and presence of a urinary catheter (p < 0.001) were significantly associated with S. lugdunensis UTI. Multivariable analysis revealed that S. lugdunensis UTI was associated with male sex (OR = 6.08, p < 0.05), solid-organ malignancies (OR = 12.27, p < 0.01), and urological system abnormalities (OR = 7.44, p < 0.05). There were significant differences in the patient population affected and predisposing factors between S. lugdunensis and S. saprophyticus UTIs.

2020 ◽  
Vol 7 (9) ◽  
Author(s):  
Tingting Li ◽  
Ying Huang ◽  
Xianguo Chen ◽  
Zhongxin Wang ◽  
Yuanhong Xu

Abstract Trichosporon spp. are emerging opportunistic agents that cause systemic diseases and life-threatening disseminated disease in immunocompromised hosts. Trichosporon japonicum is a highly rare cause of invasive trichosporonosis. In this study, we describe 2 cases of urinary tract infection caused by Trichosporon japonicum in kidney transplant patients. Culturing of urine samples yielded bluish-green colonies of T. japonicum on Candida chromogenic fungal medium. The isolates were identified as T. japonicum by matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI TOF-MS; Autof MS 1000). The identification of T. japonicum was further confirmed by 18S rRNA gene sequencing. In vitro drug susceptibility testing showed that the 2 strains of T. japonicum were resistant to 5-flucytosine, fluconazole, and caspofungin, with dose-dependent sensitivity to itraconazole and voriconazole but sensitivity to amphotericin B. The homology of the 2 T. japonicum strains, as determined by cluster analysis and principal component analysis of MALDI-TOF MS, was ~85%, suggesting a common nosocomial origin. The first 2 case reports of fluconazole-resistant T. japonicum urinary infection in kidney transplant recipients are presented.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tomoaki Nakamura ◽  
Kazuhiro Ishikawa ◽  
Takahiro Matsuo ◽  
Fujimi Kawai ◽  
Yuki Uehara ◽  
...  

Abstract Background Infections caused by Enterococcus hirae are common in animals, with instances of transmission to humans being rare. Further, few cases have been reported in humans because of the difficulty in identifying the bacteria. Herein, we report a case of pyelonephritis caused by E. hirae bacteremia and conduct a literature review on E. hirae bacteremia. Case presentation A 57-year-old male patient with alcoholic cirrhosis and neurogenic bladder presented with fever and chills that had persisted for 3 days. Physical examination revealed tenderness of the right costovertebral angle. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) of the patient’s blood and urine samples revealed the presence of E. hirae, and pyelonephritis was diagnosed. The patient was treated successfully with intravenous ampicillin followed by oral linezolid for a total of three weeks. Conclusion The literature review we conducted revealed that E. hirae bacteremia is frequently reported in urinary tract infections, biliary tract infections, and infective endocarditis and is more likely to occur in patients with diabetes, liver cirrhosis, and chronic kidney disease. However, mortality is not common because of the high antimicrobial susceptibility of E. hirae. With the advancements in MALDI-TOF MS, the number of reports of E. hirae infections has also increased, and clinicians need to consider E. hirae as a possible causative pathogen of urinary tract infections in patients with known risk factors.


2017 ◽  
Vol 55 (6) ◽  
pp. 1802-1811 ◽  
Author(s):  
Sandra Montgomery ◽  
Kiana Roman ◽  
Lan Ngyuen ◽  
Ana Maria Cardenas ◽  
James Knox ◽  
...  

ABSTRACTUrinary tract infections are one of the most common reasons for health care visits. Diagnosis and optimal treatment often require a urine culture, which takes an average of 1.5 to 2 days from urine collection to results, delaying optimal therapy. Faster, but accurate, alternatives are needed. Light scatter technology has been proposed for several years as a rapid screening tool, whereby negative specimens are excluded from culture. A commercially available light scatter device, BacterioScan 216Dx (BacterioScan, Inc.), has recently been advertised for this application. Paired use of mass spectrometry (MS) for bacterial identification and automated-system-based susceptibility testing straight from the light scatter suspension might provide dramatic improvement in times to a result. The present study prospectively evaluated the BacterioScan device, with culture as the reference standard. Positive light scatter specimens were used for downstream rapid matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS organism identification and automated-system-based antimicrobial susceptibility testing. Prospective evaluation of 439 urine samples showed a sensitivity of 96.5%, a specificity of 71.4%, and positive and negative predictive values of 45.1% and 98.8%, respectively. MALDI-TOF MS analysis of the suspension after density-based selection yielded a sensitivity of 72.1% and a specificity of 96.9%. Antimicrobial susceptibility testing of the samples identified by MALDI-TOF MS produced an overall categorical agreement of 99.2%. Given the high sensitivity and negative predictive value of results obtained, BacterioScan 216Dx is a reasonable approach for urine screening and might produce negative results in as few as 3 h, with no downstream workup. Paired rapid identification and susceptibility testing might be useful when MALDI-TOF MS results in an organism identification, and it might decrease the time to a result by more than 24 h.


2018 ◽  
Vol 159 (1) ◽  
pp. 23-30
Author(s):  
Emese Juhász ◽  
Miklós Iván ◽  
Júlia Pongrácz ◽  
Katalin Kristóf

Abstract: Introduction: Glucose non-fermenting Gram-negative bacteria are ubiquitous environmental organisms. Most of them are identified as opportunistic, nosocomial pathogens in patients. Uncommon species are identified accurately, mainly due to the introduction of matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology practice. Most of these uncommon non-fermenting rods are isolated from lower respiratory tract samples. Their significance in lower respiratory tract infections, such as rules of their testing are not clarified yet. Aim: The aim of this study was to review the clinical microbiological features of these bacteria, especially their roles in lower respiratory tract infections and antibiotic treatment options. Method: Lower respiratory tract samples of 3589 patients collected in a four-year period (2013–2016) were analyzed retrospectively at Semmelweis University (Budapest, Hungary). Identification of bacteria was performed by MALDI-TOF MS, the antibiotic susceptibility was tested by disk diffusion method. Results: Stenotrophomonas maltophilia was revealed to be the second, whereas Acinetobacter baumannii the third most common non-fermenting rod in lower respiratory tract samples, behind the most common Pseudomonas aeruginosa. The total number of uncommon non-fermenting Gram-negative isolates was 742. Twenty-three percent of isolates were Achromobacter xylosoxidans. Beside Chryseobacterium, Rhizobium, Delftia, Elizabethkingia, Ralstonia and Ochrobactrum species, and few other uncommon species were identified among our isolates. The accurate identification of this species is obligatory, while most of them show intrinsic resistance to aminoglycosides. Resistance to ceftazidime, cefepime, piperacillin-tazobactam and carbapenems was frequently observed also. Conclusions: Ciprofloxacin, levofloxacin and trimethoprim-sulfamethoxazole were found to be the most effective antibiotic agents. Orv Hetil. 2018; 159(1): 23–30.


2020 ◽  
Vol 35 (2) ◽  
Author(s):  
Jari Intra ◽  
Cecilia Sarto ◽  
Giuseppe Serra ◽  
Paolo Brambilla

The infrequency of urinary tract and blood stream infections caused by Aerococcus urinae is most probably due to the difficulties in the identification of this bacterium using standard microbiological methods. With the introduction of more sensitive and accurate techniques in clinical microbiology, such as genetic approaches and Matrix-Assisted Laser Desorption/Ionization-Time Of Flight (MALDI-TOF) mass spectrometry (MS), the incidence of infections due to A. urinae increased. Herein, we described a case of urinary tract and bloodstream infection caused by A. urinae, which occurred in an 86-year-old Caucasian man with a previous history of prostate cancer. The identification of A. urinae was performed by MALDI-TOF MS, since this microorganism cannot be identified by biochemical reactions. In this report, we highlight the need to consider MALDI-TOF MS as technique of choice for A. urinae identification in the presence of subjects with predisposing factors, such as old age, male gender, and genitourinary tract pathologies.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Laura Van Driessche ◽  
Jade Bokma ◽  
Piet Deprez ◽  
Freddy Haesebrouck ◽  
Filip Boyen ◽  
...  

AbstractRespiratory tract infections are a major health problem and indication for antimicrobial use in cattle and in humans. Currently, most antimicrobial treatments are initiated without microbiological results, holding the risk of inappropriate first intention treatment. The main reason for this empirical treatment is the long turnaround time between sampling and availability of identification and susceptibility results. Therefore the objective of the present study was to develop a rapid identification procedure for pathogenic respiratory bacteria in bronchoalveolar lavage fluid (BALf) samples from cattle by MALDI-TOF MS, omitting the cultivation step on agar plates to reduce the turnaround time between sampling and identification of pathogens. The effects of two different liquid growth media and various concentrations of bacitracin were determined to allow optimal growth of Pasteurellaceae and minimise contamination. The best procedure was validated on 100 clinical BALf samples from cattle with conventional bacterial culture as reference test. A correct identification was obtained in 73% of the samples, with 59.1% sensitivity (Se) (47.2–71.0%) and 100% specificity (Sp) (100–100%) after only 6 hours of incubation. For pure and dominant culture samples, the procedure was able to correctly identify 79.2% of the pathogens, with a sensitivity (Se) of 60.5% (45.0–76.1%) and specificity (Sp) of 100% (100–100%). In mixed culture samples, containing ≥2 clinically relevant pathogens, one pathogen could be correctly identified in 57% of the samples with 57.1% Se (38.8–75.5%) and 100% Sp (100–100%). In conclusion, MALDI-TOF MS is a promising tool for rapid pathogen identification in BALf. This new technique drastically reduces turnaround time and may be a valuable decision support tool to rationalize antimicrobial use.


2010 ◽  
Vol 59 (3) ◽  
pp. 273-284 ◽  
Author(s):  
Claire Moliner ◽  
Christophe Ginevra ◽  
Sophie Jarraud ◽  
Christophe Flaudrops ◽  
Marielle Bedotto ◽  
...  

Legionella species are facultative, intracellular bacteria that infect macrophages and protozoa, with the latter acting as transmission vectors to humans. These fastidious bacteria mostly cause pulmonary tract infections and are routinely identified by various molecular methods, mainly PCR targeting the mip gene and sequencing, which are expensive and time-consuming. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has emerged as a rapid and inexpensive method for identification of bacterial species. This study evaluated the use of MALDI-TOF-MS for rapid species and serogroup identification of 21 Legionella species recognized as human pathogens. To this end, a reference MS database was developed including 59 Legionella type strains, and a blind test was performed using 237 strains from various species. Two hundred and twenty-three of the 237 strains (94.1 %) were correctly identified at the species level, although ten (4.2 %) were identified with a score lower than 2.0. Fourteen strains (5.9 %) from eight species were misidentified at the species level, including seven (3.0 %) with a significant score, suggesting an intraspecific variability of protein profiles within some species. MALDI-TOF-MS was reproducible but could not identify Legionella strains at the serogroup level. When compared with mip gene sequencing, MALDI-TOF-MS exhibited a sensitivity of 99.2 and 89.9 % for the identification of Legionella strains at the genus and species level, respectively. This study demonstrated that MALDI-TOF-MS is a reliable tool for the rapid identification of Legionella strains at the species level.


2011 ◽  
Vol 35 (4) ◽  
pp. ---
Author(s):  
Sören Schubert ◽  
Andreas Wieser

Abstract Very recently a novel method for differentiation of bacteria and fungi was developed, that is, identification by means of matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS). This differentiation relies on the exact measurement of species-specific protein spectra of ribosomal proteins. It is at least as accurate as conventional biochemical differentiation methods, but provides results within minutes. In addition to differentiation of bacteria and yeasts grown on agar plates, direct identification is feasible from positive blood cultures as well as from urine samples of patients suffering from urinary tract infections. Future developments of MALDI-TOF MS for clinical microbiological purposes include the detection of β-lactamase and carbapenemase activity as well as genotyping of bacteria below the species level.


Author(s):  
Arzu Akşit İlki ◽  
Sevim Özsoy ◽  
Gulşen Gelmez ◽  
Burak Aksu ◽  
Güner Söyletir

AbstractUrinary tract infections are one of the most common bacterial infections and rapid diagnosis of the infection is essential for appropriate antibiotic therapy. The goal of our study was to identify urinary pathogens directly by MALDI-TOF MS and to perform antibiotic susceptibility tests in order to shorten the period spent for culturing.Urine samples submitted for culture to the Clinical Microbiology Laboratory were enrolled in this study. Urine samples were screened for leukocyte and bacteria amount by flow cytometry. Samples with bacterial load of 106–107/mL were tested directly by MALDI-TOF MS and antibiotic susceptibility tests (AST) were performed.In total, 538 positive urine samples were evaluated in our study. MALDI-TOF MS identified the microorganism directly from the urine sample in 91.8% of these samples and the concordance rate of conventional identification and direct detection was 95.8% for Gram-negatives at the genus and species level. Escherichia coli (n:401) was the most frequently isolated microorganism, followed by Klebsiella pneumoniae (n:57). AST results were generated for 111 of these urine samples and the concordance was 90% and 87% for E. coli and K. pneumoniae, respectively.Our results showed that screening of urine samples with flow cytometry to detect positive samples and identification of uropathogens directly by MALDI-TOF MS with an accuracy of over 90% can be a suitable method particularly for Gram-negative bacteria in clinical microbiology laboratories.


Sign in / Sign up

Export Citation Format

Share Document