scholarly journals MARCH6 promotes hepatocellular carcinoma development through up-regulation of ATF2

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jie Sun ◽  
Zheng Dong ◽  
Zhengyao Chang ◽  
Hongfei Liu ◽  
Qiyu Jiang ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is a common cause of cancer mortality worldwide. Recent studies have shown that the polytopic enzyme membrane associated ring-CH-type finger 6 (MARCH6) participates in tumorigenesis, but its function in HCC development needs to be investigated. This study aimed to explore the role of MARCH6 in HCC. Methods Expression of MARCH6 in human HCC samples was checked by immunohistochemical staining assay. Clinical relevance of MARCH6 and activating transcription factor 2 (ATF2) was analyzed from TCGA database. CCK-8, EdU staining, colony formation and transwell were performed to assess cell proliferation, growth and migration. Xenografted tumorigenesis was used to examine in vivo role MARCH6. Immunoblotting was applied to detect protein abundance. Results We found that MARCH6 expression was elevated in human HCC samples. Over-expression of MARCH6 was associated with poor prognosis of HCC patients. Up-expression of MARCH6 promoted cell growth and migration of HCC cells. In contrast, the HCC cell growth and migration were suppressed by MARCH6 knockdown. Furthermore, the DNA synthesis was enhanced by MARCH6. The expression of ATF2 was potentiated by MARCH6 over-expression, while it was suppressed by MARCH6 silencing. TCGA database showed positive correlation between the expression of MARCH6 and ATF2. Importantly, ATF2 expression contributed to the oncogenic function of HCC cells. Conclusion Our findings suggest that MARCH6-mediated ATF2 up-regulation contributes to HCC development. MARCH6 may be a promising target for the diagnosis and treatment of HCC.

2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


Author(s):  
Zeng Cheng Zou ◽  
Min Dai ◽  
Zeng Yin Huang ◽  
Yi Lu ◽  
He Ping Xie ◽  
...  

The direct roles of miR-139-3p on hepatocellular carcinoma (HCC) cell growth and metastasis remain poorly understood. We attempted to demonstrate the regulatory role of miR-139-3p in HCC progression and its underlying mechanisms. Here we showed that miR-139-3p expression was significantly reduced in the HCC tissues compared to paratumor tissues. Exogenous overexpression of miR-139-3p inhibited the migration and invasion of HCC cells, whereas downregulation of miR-139-3p was able to induce HCC HepG2 and SNU-449 cell migration and invasion. In addition, miR-139-3p inhibited HCC growth and lung metastasis in an in vivo mouse model, which is mainly regulated by annexin A2 receptor (ANXA2R). Finally, we identified that the expression of miR-139-3p was inversely correlated with ANXA2R expression in human HCC tissue. All these results demonstrated that miR-139-3p inhibited the metastasis process in HCC by downregulating ANXA2R expression.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xirui Ma ◽  
Ziming Mao ◽  
Jing Zhu ◽  
Huifang Liu ◽  
Fengling Chen

Hepatocellular carcinoma (HCC) is one of the most common subtypes of malignant liver tumors, characterized by high morbidity and mortality. Due to its poor diagnosis strategy and inefficient clinical intervention, HCC has brought terrible life experiences for patients worldwide. Finding novel curative agents for HCC is urgently needed. In the current study, we hypothesized that lncRNA PANTR1 participates in HCC initiation or progression. Our study found that lncRNA PANTR1 was upregulated in HCC tumor tissues and abundantly expressed in HCC cell lines. PANTR1 knockdown inhibited cell growth and migration, promoted cell apoptosis in vitro, and suppressed tumor cell growth in vivo. Moreover, our results suggest that downregulated PANTR1 inhibited the Warburg effect in HCC cells. Underlying mechanisms of PANTR1 in HCC progression were investigated. PANTR1 acted as a competent sponge for miR-587 and downregulated miR-587 expression in HCC cells. Further, MiR-587 directly targets BCL2A1. lncRNA PANTR1 promotes HCC progression via mediating the miR-587-BCL2A1 axis. Our study identified a novel lncRNA PANTR1/miR-587/BCL2A1 axis in HCC progression. We might provide a new target for HCC basic research and clinical management.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Immunohistochemical staining and qRT-PCR analysis were performed in human HCC sampels to study the clinical significance of KLF7, VPS35 and β-catenin. Results Firstly, KLF7 was highly expressed in human HCC samples and correlated with patients’ differentiation and metastasis status. KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Lastly, there was a positive correlation among KLF7, VPS35 and active-β-catenin in human HCC patients. Conclusion We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Xiaoguang Gu ◽  
Jianan Zhang ◽  
Yajuan Ran ◽  
Hena Pan ◽  
JinHong Jia ◽  
...  

AbstractCircular RNAs have been reported to play significant roles in regulating pathophysiological processes while also guiding clinical diagnosis and treatment of hepatocellular carcinoma (HCC). However, only a few circRNAs have been identified thus far. Herein, we investigated the role of a specific closed-loop structure of hsa_circ_101555 that was generated by back-splicing of the host gene casein kinase 1 gamma 1 (CSNK1G1) in the development and proliferation of HCC. We investigated the expression of Hsa_circ_101555 in HCC and normal tissues using bioinformatics. The expression level of hsa_circ_101555 was further detected by fluorescence in situ hybridization and qRT-PCR in ten HCC patients. Transwell, migration, WST-1 assays, and colony formation assays were used to evaluate the role of hsa_circ_101555 in HCC development and proliferation. The regulatory mechanisms of hsa_circ_101555 in miR-145-5p and CDCA3 were determined by dual luciferase reporter assay. A mouse xenograft model was also used to determine the effect of hsa_circ_101555 on HCC growth in vivo. hsa_circ_101555 showed greater stability than the linear RNA; while in vitro and in vivo results demonstrated that hsa_circ_101555 silencing significantly suppressed cell proliferation, migration, and invasion of HCC cells. Rescue experiments further demonstrated that suppression of miR-145-5p significantly attenuated the biological effects of hsa_circ_101555 knockdown in HCC cells. We also identified a putative oncogene CDCA3 as a potential miR-145-5p target. Thus, our results demonstrated that hsa_circ_101555 might function as a competing endogenous RNA of miR-145-5p to upregulate CDCA3 expression in HCC. These findings suggest that hsa_circ_101555 may be a potential therapeutic target for patients with HCC.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Heyun Zhang ◽  
Zhangyu Zheng ◽  
Rongqin Zhang ◽  
Yongcong Yan ◽  
Yaorong Peng ◽  
...  

AbstractHepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. SET and MYND domain-containing protein 3 (SMYD3) has been shown to promote the progression of various types of human cancers, including liver cancer; however, the detailed molecular mechanism is still largely unknown. Here, we report that SMYD3 expression in HCC is an independent prognostic factor for survival and promotes the proliferation and migration of HCC cells. We observed that SMYD3 upregulated sphingosine-1-phosphate receptor 1 (S1PR1) promoter activity by methylating histone 3 (H3K4me3). S1PR1 was expressed at high levels in HCC samples, and high S1PR1 expression was associated with shorter survival. S1PR1 expression was also positively correlated with SMYD3 expression in HCC samples. We confirmed that SMYD3 promotes HCC cell growth and migration in vitro and in vivo by upregulating S1PR1 expression. Further investigations revealed that SMYD3 affects critical signaling pathways associated with the progression of HCC through S1PR1. These findings strongly suggest that SMYD3 has a crucial function in HCC progression that is partially mediated by histone methylation at the downstream gene S1PR1, which affects key signaling pathways associated with carcinogenesis and the progression of HCC.


2019 ◽  
Vol 30 (21) ◽  
pp. 2651-2658
Author(s):  
Chan-wool Lee ◽  
Young-Chang Kwon ◽  
Youngbin Lee ◽  
Min-Yoon Park ◽  
Kwang-Min Choe

Wound closure in the Drosophila larval epidermis mainly involves nonproliferative, endocyling epithelial cells. Consequently, it is largely mediated by cell growth and migration. We discovered that both cell growth and migration in Drosophila require the cochaperone-encoding gene cdc37. Larvae lacking cdc37 in the epidermis failed to close wounds, and the cells of the epidermis failed to change cell shape and polarize. Likewise, wound-induced cell growth was significantly reduced, and correlated with a reduction in the size of the cell nucleus. The c-Jun N-terminal kinase (JNK) pathway, which is essential for wound closure, was not typically activated in injured cdc37 knockdown larvae. In addition, JNK, Hep, Mkk4, and Tak1 protein levels were reduced, consistent with previous reports showing that Cdc37 is important for the stability of various client kinases. Protein levels of the integrin β subunit and its wound-induced protein expression were also reduced, reflecting the disruption of JNK activation, which is crucial for expression of integrin β during wound closure. These results are consistent with a role of Cdc37 in maintaining the stability of the JNK pathway kinases, thus mediating cell growth and migration during Drosophila wound healing.


2020 ◽  
Vol 168 (5) ◽  
pp. 535-546 ◽  
Author(s):  
Yuepei Zou ◽  
Zhonghua Sun ◽  
Shuangming Sun

Abstract Long non-coding RNA (lnc) HCG18 has been reported to contribute progression of a variety of tumours. However, its roles in hepatocellular carcinoma (HCC) remains unknown. In the current study, we intended to uncover the biological functions of HCG18 in HCC. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to detect the expression of HCG18, microRNA-214-3p (miR-214-3p) and centromere protein M (CENPM) messenger RNA (mRNA). The role of HCG18 in the growth and migration were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay, wound healing assay and flow cytometry in vitro and animal experiments in vivo. The results showed that HCG18 was highly expressed in HCC tissues. HCG18 silencing inhibited the proliferation and migration while induced the apoptosis of HCC cells. Besides, miR-214-3p was down-regulated in HCC cells. Further experiments revealed that miR-214-3p could directly bind to HCG18 and exerted an anti-tumour role to counteracted siHCG18-1-mediated influence in HCC cells. Moreover, miR-214-3p could directly interact with CENPM mRNA and down-regulating the expression of CENPM. While HCG18 could up-regulate the expression of CENPM through acting as a sponge of miR-214-3p. Therefore, those results suggested HCG18 functioned as an oncogene to promote the proliferation and migration of HCC cells via miR-214-3p/CENPM axis.


2016 ◽  
Vol 38 (2) ◽  
pp. 777-785 ◽  
Author(s):  
Jian-Jun Sun ◽  
Guo-Yong Chen ◽  
Zhan-Tao Xie

Background/Aims: A growing body of evidence supports the notion that MicroRNAs (miRNAs) function as key regulators of tumorigenesis. In the present study, the expression and roles of miRNA-361-5p were explored in hepatocellular carcinoma (HCC). Methods: Quantitative real-time PCR was used to detect the expression miR-361-5p in HCC tissues and pair-matched adjacent normal tissues. MTT and BrdU assays were used to identify the role of miR-361-5p in the regulation of proliferation and invasion of HCC cells. Using bioinformatics analysis, luciferase reporter assays and Western blots were used to identify the molecular target of miR-361-5p. nude mice were used to detect the anti-tumor role of miR-361-5p in vivo. Results: miR-361-5p was down-regulated in HCC tissues in comparison to adjacent normal tissues, due to hypermethylation at its promoter region. Overexpression of miR-361-5p suppressed proliferation and invasion of HCC cells. Chemokine (C-X-C Motif) receptor 6 (CXCR6) was identified as a target of miR-361-5p. Indeed, knockdown of CXCR6 photocopied, while overexpression of CXCR6 largely attenuated the anti-proliferative effect of miR-361-5p. More importantly, in vivo studies demonstrated that forced expression of miR-361-5p significantly inhibited tumor growth in the nude mice. Conclusion: Our results indicate that miR-361-5p acts as a tumor suppressor and might serve as a novel therapeutic target for the treatment of HCC patients.


2010 ◽  
Vol 33 (5-6) ◽  
pp. 191-205 ◽  
Author(s):  
S. Marchán ◽  
S. Pérez-Torras ◽  
A. Vidal ◽  
J. Adan ◽  
F. Mitjans ◽  
...  

Background: Pancreatic cancer, the fifth leading cause of adult cancer death in Western countries, lacks early detection, and displays significant dissemination ability. Accumulating evidence shows that integrin-mediated cell attachment to the extracellular matrix induces phenotypes and signaling pathways that regulate tumor cell growth and migration.Methods: In view of these findings, we examined the role ofβ3in pancreatic cancer by generating two stableβ3-expressing pancreatic human cell lines and characterizing their behavior in vitro and in vivo.Results: Transduction ofβ3selectively augmented the functional membraneαvβ3integrin levels, as evident from the enhanced adhesion and migration abilities related to active Rho GTPases. No effects on in vitro anchorage-dependent growth, but higher anoikis were detected inβ3-overexpressing cells. Moreover, tumors expressingβ3displayed reduced growth. Interestingly, treatment of mice with anαv-blocking antibody inhibited the growth ofβ3-expressing tumors to a higher extent.Conclusion: Our results collectively support the hypothesis thatαvβ3integrin has dual actions depending on the cell environment, and provide additional evidence on the role of integrins in pancreatic cancer, which should eventually aid in improving prediction of the effects of therapies addressed to modulate integrin activities in these tumors.


Sign in / Sign up

Export Citation Format

Share Document