scholarly journals MicroRNA-139-3p Suppresses Tumor Growth and Metastasis in Hepatocellular Carcinoma by Repressing ANXA2R

Author(s):  
Zeng Cheng Zou ◽  
Min Dai ◽  
Zeng Yin Huang ◽  
Yi Lu ◽  
He Ping Xie ◽  
...  

The direct roles of miR-139-3p on hepatocellular carcinoma (HCC) cell growth and metastasis remain poorly understood. We attempted to demonstrate the regulatory role of miR-139-3p in HCC progression and its underlying mechanisms. Here we showed that miR-139-3p expression was significantly reduced in the HCC tissues compared to paratumor tissues. Exogenous overexpression of miR-139-3p inhibited the migration and invasion of HCC cells, whereas downregulation of miR-139-3p was able to induce HCC HepG2 and SNU-449 cell migration and invasion. In addition, miR-139-3p inhibited HCC growth and lung metastasis in an in vivo mouse model, which is mainly regulated by annexin A2 receptor (ANXA2R). Finally, we identified that the expression of miR-139-3p was inversely correlated with ANXA2R expression in human HCC tissue. All these results demonstrated that miR-139-3p inhibited the metastasis process in HCC by downregulating ANXA2R expression.

2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Xiaoguang Gu ◽  
Jianan Zhang ◽  
Yajuan Ran ◽  
Hena Pan ◽  
JinHong Jia ◽  
...  

AbstractCircular RNAs have been reported to play significant roles in regulating pathophysiological processes while also guiding clinical diagnosis and treatment of hepatocellular carcinoma (HCC). However, only a few circRNAs have been identified thus far. Herein, we investigated the role of a specific closed-loop structure of hsa_circ_101555 that was generated by back-splicing of the host gene casein kinase 1 gamma 1 (CSNK1G1) in the development and proliferation of HCC. We investigated the expression of Hsa_circ_101555 in HCC and normal tissues using bioinformatics. The expression level of hsa_circ_101555 was further detected by fluorescence in situ hybridization and qRT-PCR in ten HCC patients. Transwell, migration, WST-1 assays, and colony formation assays were used to evaluate the role of hsa_circ_101555 in HCC development and proliferation. The regulatory mechanisms of hsa_circ_101555 in miR-145-5p and CDCA3 were determined by dual luciferase reporter assay. A mouse xenograft model was also used to determine the effect of hsa_circ_101555 on HCC growth in vivo. hsa_circ_101555 showed greater stability than the linear RNA; while in vitro and in vivo results demonstrated that hsa_circ_101555 silencing significantly suppressed cell proliferation, migration, and invasion of HCC cells. Rescue experiments further demonstrated that suppression of miR-145-5p significantly attenuated the biological effects of hsa_circ_101555 knockdown in HCC cells. We also identified a putative oncogene CDCA3 as a potential miR-145-5p target. Thus, our results demonstrated that hsa_circ_101555 might function as a competing endogenous RNA of miR-145-5p to upregulate CDCA3 expression in HCC. These findings suggest that hsa_circ_101555 may be a potential therapeutic target for patients with HCC.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qingmin Chen ◽  
Ludong Tan ◽  
Zhe Jin ◽  
Yahui Liu ◽  
Ze Zhang

Cellular retinoic acid-binding protein 2 (CRABP2) binds retinoic acid (RA) in the cytoplasm and transports it into the nucleus, allowing for the regulation of specific downstream signal pathway. Abnormal expression of CRABP2 has been detected in the development of several tumors. However, the role of CRABP2 in hepatocellular carcinoma (HCC) has never been revealed. The current study aimed to investigate the role of CRABP2 in HCC and illuminate the potential molecular mechanisms. The expression of CRABP2 in HCC tissues and cell lines was detected by western blotting and immunohistochemistry assays. Our results demonstrated that the expression levels of CRABP2 in HCC tissues were elevated with the tumor stage development, and it was also elevated in HCC cell lines. To evaluate the function of CRABP2, shRNA-knockdown strategy was used in HCC cells. Cell proliferation, metastasis, and apoptosis were analyzed by CCK-8, EdU staining, transwell, and flow cytometry assays, respectively. Based on our results, knockdown of CRABP2 by shRNA resulted in the inhibition of tumor proliferation, migration, and invasion in vitro, followed by increased tumor apoptosis-related protein expression and decreased ERK/VEGF pathway-related proteins expression. CRABP2 silencing in HCC cells also resulted in the failure to develop tumors in vivo. These results provide important insights into the role of CRABP2 in the development and development of HCC. Based on our findings, CRABP2 may be used as a novel diagnostic biomarker, and regulation of CRABP2 in HCC may provide a potential molecular target for the therapy of HCC.


2021 ◽  
Author(s):  
kunwei niu ◽  
Shibin Qu ◽  
Xuan Zhang ◽  
Jimin Dai ◽  
Jianlin Wang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is often diagnosed at a late stage, when the prognosis is poor. The regulation of long non-coding RNAs (lncRNAs) plays a crucial role in HCC. However, the precise regulatory mechanisms of lncRNA signaling in HCC remain largely unknown. We study aim to investigate the underlying mechanisms of lncRNA (upregulated in hepatocellular carcinoma) URHC in HCC. Methods: RT-qPCR, fluorescence in situ hybridization (FISH) staining, EdU, colony formation, and tumor xenografts experiments were used to identify localized and biological effects of URHC on HCC cells in vitro and in vivo. The bioinformatics analysis, Dual-luciferase reporter assay, and rescue experiments revealed the potential mechanism of URHC.Results: URHC silencing may inhibit the HCC cells proliferation in vitro and in vivo. We found that URHC was mainly localized in the cytoplasm. The expression of miR-5007-3p was negatively regulated by URHC. And miR-5007-3p could reverse the effect of URHC in HCC cells. The expression of DNAJB9 was negatively regulated by miR-5007-3p but positively regulated by URHC. These suggesting of lncRNA-URHC positively regulated the level of DNAJB9 by sponging miR-5007-3p.Conclusion: Together, our study elucidated the role of URHC as a miRNA sponge in HCC, and shed new light on lncRNA-directed diagnostics and therapeutics in HCC.


2020 ◽  
Vol 40 (10) ◽  
Author(s):  
Xiaohui Duan ◽  
Wei Li ◽  
Peng Hu ◽  
Bo Jiang ◽  
Jianhui Yang ◽  
...  

Abstract Hepatocellular carcinoma (HCC) remains one of the most common malignant tumors worldwide. The present study aimed to investigate the biological role of microRNA-183-5p (miR-183-5p), a novel tumor-related microRNA (miRNA), in HCC and illuminate the possible molecular mechanisms. The expression patterns of miR-183-5p in clinical samples were characterized using qPCR analysis. Kaplan–Meier survival curve was applied to evaluate the correlation between miR-183-5p expression and overall survival of HCC patients. Effects of miR-183-5p knockdown on HCC cell proliferation, apoptosis, migration and invasion capabilities were determined via Cell Counting Kit-8 (CCK8) assays, flow cytometry, scratch wound healing assays and Transwell invasion assays, respectively. Mouse neoplasm transplantation models were established to assess the effects of miR-183-5p knockdown on tumor growth in vivo. Bioinformatics analysis, dual-luciferase reporter assays and rescue assays were performed for mechanistic researches. Results showed that miR-183-5p was highly expressed in tumorous tissues compared with adjacent normal tissues. Elevated miR-183-5p expression correlated with shorter overall survival of HCC patients. Moreover, miR-183-5p knockdown significantly suppressed proliferation, survival, migration and invasion of HCC cells compared with negative control treatment. Consistently, miR-183-5p knockdown restrained tumor growth in vivo. Furthermore, programmed cell death factor 4 (PDCD4) was identified as a direct target of miR-183-5p. Additionally, PDCD4 down-regulation was observed to abrogate the inhibitory effects of miR-183-5p knockdown on malignant phenotypes of HCC cells. Collectively, our data suggest that miR-183-5p may exert an oncogenic role in HCC through directly targeting PDCD4. The current study may offer some new insights into understanding the role of miR-183-5p in HCC.


Oncogenesis ◽  
2019 ◽  
Vol 8 (12) ◽  
Author(s):  
Juan Du ◽  
Zhihao Zhao ◽  
Hetong Zhao ◽  
Dong Liu ◽  
Hui Liu ◽  
...  

AbstractPostsurgical recurrence within 2 years is the major cause of poor survival of hepatocellular carcinoma (HCC) patients. However, the molecular mechanism underlying HCC recurrence remains unclear. Here, we distinguish the function and mechanism of Sec62 in promoting HCC recurrence. The correlation between Sec62 and early recurrence was demonstrated in 60 HCC samples from a prospective study. HCC cells with Sec62 knockdown (Sec62KD) or overexpression (Sec62OE) were used to determine the potential of Sec62 in cell migration in vitro. Microarray analysis comparing Sec62KD or Sec62OE to their control counterparts was used to explore the mechanisms of Sec62-induced recurrence. A luciferase-labelled orthotopic nude mouse model of HCC with Sec62KD or Sec62OE was used to validate the potential of Sec62 in early HCC recurrence in vivo. We found that high expression of Sec62 was positively correlated with surgical recurrence in clinical HCC samples. Multivariate analysis revealed that Sec62 was an independent prognostic factor for early recurrence in postoperative HCC patients. Moreover, Sec62 promoted migration and invasion of HCC cells in vitro and postsurgical recurrence in vivo. Mechanically, integrinα/CAV1 signalling was identified as one of the targets of Sec62 in cell movement. Overexpression of integrin α partially rescued the Sec62 knockdown-induced inhibition of cell migration. Sec62 is a potentially prognostic factor for early recurrence in postoperative HCC patients and promotes HCC metastasis through integrinα/CAV1 signalling. Sec62 might be an attractive drug target for combating HCC postsurgical recurrence.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2176
Author(s):  
Haibo Zhang ◽  
Jun-Koo Yi ◽  
Hai Huang ◽  
Song Park ◽  
Sijun Park ◽  
...  

Colorectal cancer (CRC) is one of the leading causes of mortality and morbidity in the world. Rhein has demonstrated therapeutic effects in various cancer models. However, its effects and underlying mechanisms of action in CRC remain poorly understood. We investigated the potential anticancer activity and underlying mechanisms of rhein in CRC in vitro and in vivo. Cell viability and anchorage-independent colony formation assays were performed to examine the antigrowth effects of rhein on CRC cells. Wound-healing and Transwell assays were conducted to assess cell migration and invasion capacity. Cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. A tissue microarray was used to detect mTOR expression in CRC patient tissues. Gene overexpression and knockdown were done to analyze the function of mTOR in CRC. The anticancer effect of rhein in vivo was assessed in a CRC xenograft mouse model. The results show that rhein significantly inhibited CRC cell growth by inducing S-phase cell cycle arrest and apoptosis. Rhein inhibited CRC cell migration and invasion through the epithelial–mesenchymal transition (EMT) process. mTOR was highly expressed in CRC cancer tissues and cells. Overexpression of mTOR promoted cell growth, migration, and invasion, whereas mTOR knockdown diminished these phenomena in CRC cells in vitro. In addition, rhein directly targeted mTOR and inhibited the mTOR signaling pathway in CRC cells. Rhein promoted mTOR degradation through the ubiquitin-proteasome pathway. Intraperitoneal administration of rhein inhibited HCT116 xenograft tumor growth through the mTOR pathway. In conclusion, rhein exerts anticancer activity in vitro and in vivo by targeting mTOR and inhibiting the mTOR signaling pathway in CRC. Our results indicate that rhein is a potent anticancer agent that may be useful for the prevention and treatment of CRC.


2021 ◽  
Author(s):  
Wenjie Huang ◽  
Sufen Li ◽  
Xianhua Chen ◽  
Lin Sun ◽  
Gangxi Pan ◽  
...  

Abstract BackgroundIncreasing evidence suggests that miR-1915-3p plays vital regulatory roles in metastasis and progression of several types of cancer. However, the roles and underlying mechanism of miR-1915-3p in hepatocellular carcinoma (HCC) remains largely unclear. MethodsWe carried out a bioinformatic meta-analysis to investigate a possible role of miR-1915-3p as prognostic biomarkers. In vitro cellular models of HCC were used for functional studies exploring the role of miR-1915-3p in HCC development and progression. Finally, in vivo studies were performed to demonstrate that miR-1915-3p is a viable therapeutic target.ResultsThis study showed that miR-1915-3p was significantly increased in HCC tissue samples and cell lines, and high miR-1915-3p expression was associated with a poor overall survival (OS) and disease-free survival (DFS) time of HCC patients. Overexpression or ablation of miR-1915-3p expression resulted in accelerated or inhibited cell proliferation, migration, and invasion respectively in HCC cells. In addition, miR-1915-3p induced downregulation of proapoptotic factors, including caspase3, caspase8, BAD, Bcl2L11, and P53. It also induced upregulation of antiapoptotic Bcl-2, protecting HCC cells from apoptosis. A biological analysis indicated that miR-1915-3p could be directly targeted to Bcl2L11 to regulate the proliferation, invasion, and migration of HCC cells. Furthermore, in vivo studies confirmed that treatment with miR-1915-3p retarded the growth of tumor in nude mice. Conclusionour study provided the evidence for the regulatory role of miR-1915-3p in HCC, which was causally linked to targeting of Bcl2L11. Medications that abrogate excessively expressed miR-1915-3p may offer novel targets for the management of HCC.


2020 ◽  
Author(s):  
Wenjie Huang ◽  
Sufen Li ◽  
Xianhua Chen ◽  
Lin Sun ◽  
Gangxi Pan ◽  
...  

Abstract Background: Increasing evidence suggests that miR-1915-3p plays vital regulatory roles in metastasis and progression of several types of cancer. However, the roles and underlying mechanism of miR-1915-3p in hepatocellular carcinoma (HCC) remains largely unclear. Methods: We carried out a bioinformatic meta-analysis to investigate a possible role of miR-1915-3p as prognostic biomarkers. In vitro cellular models of HCC were used for functional studies exploring the role of miR-1915-3p in HCC development and progression. Finally, in vivo studies were performed to demonstrate that miR-1915-3p is a viable therapeutic target.Results: This study showed that miR-1915-3p was significantly increased in HCC tissue samples and cell lines, and high miR-1915-3p expression was associated with a poor overall survival (OS) and disease-free survival (DFS) time of HCC patients. Overexpression or ablation of miR-1915-3p expression resulted in accelerated or inhibited cell proliferation, migration, and invasion respectively in HCC cells. In addition, miR-1915-3p induced downregulation of proapoptotic factors, including caspase3, caspase8, BAD, Bcl2L11, and P53. It also induced upregulation of antiapoptotic Bcl-2, protecting HCC cells from apoptosis. A biological analysis indicated that miR-1915-3p could be directly targeted to Bcl2L11 to regulate the proliferation, invasion, and migration of HCC cells. Furthermore, in vivo studies confirmed that treatment with miR-1915-3p retarded the growth of tumor in nude mice. Conclusion: our study provided the evidence for the regulatory role of miR-1915-3p in HCC, which was causally linked to targeting of Bcl2L11. Medications that abrogate excessively expressed miR-1915-3p may offer novel targets for the management of HCC.


2021 ◽  
Author(s):  
Hye Ri Ahn ◽  
Geum Ok Baek ◽  
Moon Gyeong Yoon ◽  
Ju A Son ◽  
Jung Hwan Yoon ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers worldwide. Wiskott-Aldrich syndrome protein family member 2 (WASF2) is an integral member of the actin cytoskeleton pathway that plays a crucial role in cell motility. In this study, we aimed to explore the role of WASF2 in HCC carcinogenesis and its regulatory mechanism. Methods: WASF2 expression in HCC was analyzed using six public RNA-seq datasets and 66 paired tissues from patients with HCC. Role of WASF2 in HCC cell phenotypes was evaluated using small interfering RNA (siRNA) in vitro and in vivo. Epigenetic regulatory mechanism of WASF2 was assessed in the Cancer Genome Atlas liver hepatocellular carcinoma project (TCGA_LIHC) dataset and also validated in 38 paired HCC tissues. Results: WASF2 is overexpressed in HCC and is clinically correlated with prognosis. WASF2 inactivation decreased the viability, growth, proliferation, migration, and invasion of Huh-7 and SNU475 HCC cells by restoring G2/M checkpoint function, inducing cell death, and inhibiting epithelial-mesenchymal transition, and hindering actin polymerization. In addition, WASF2 knockdown using siWASF2 in a xenograft mouse model exerted tumor suppressive effect. Furthermore, we observed a negative correlation between WASF2 methylation status and mRNA expression. The cg24162579 CpG island in the WASF2 5′ promoter region was hypomethylated in HCC compared to matched non-tumor samples. Patients with high WASF2 methylation and low WASF2 expression displayed the highest overall survival.Conclusions: WASF2 is overexpressed and hypomethylated in HCC and correlates with patient prognosis. Moreover, WASF2 inactivation exerts anti-tumorigenic effects on HCC cells in vitro and in vivo, suggesting that WASF2 could be a potential therapeutic target for HCC.


Sign in / Sign up

Export Citation Format

Share Document