LncRNA HCG18 contributes to the progression of hepatocellular carcinoma via miR-214-3p/CENPM axis

2020 ◽  
Vol 168 (5) ◽  
pp. 535-546 ◽  
Author(s):  
Yuepei Zou ◽  
Zhonghua Sun ◽  
Shuangming Sun

Abstract Long non-coding RNA (lnc) HCG18 has been reported to contribute progression of a variety of tumours. However, its roles in hepatocellular carcinoma (HCC) remains unknown. In the current study, we intended to uncover the biological functions of HCG18 in HCC. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to detect the expression of HCG18, microRNA-214-3p (miR-214-3p) and centromere protein M (CENPM) messenger RNA (mRNA). The role of HCG18 in the growth and migration were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay, wound healing assay and flow cytometry in vitro and animal experiments in vivo. The results showed that HCG18 was highly expressed in HCC tissues. HCG18 silencing inhibited the proliferation and migration while induced the apoptosis of HCC cells. Besides, miR-214-3p was down-regulated in HCC cells. Further experiments revealed that miR-214-3p could directly bind to HCG18 and exerted an anti-tumour role to counteracted siHCG18-1-mediated influence in HCC cells. Moreover, miR-214-3p could directly interact with CENPM mRNA and down-regulating the expression of CENPM. While HCG18 could up-regulate the expression of CENPM through acting as a sponge of miR-214-3p. Therefore, those results suggested HCG18 functioned as an oncogene to promote the proliferation and migration of HCC cells via miR-214-3p/CENPM axis.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shihai Liu ◽  
Jing Qiu ◽  
Guifang He ◽  
Weitai He ◽  
Changchang Liu ◽  
...  

AbstractTumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce substantial cytotoxicity in tumor cells but rarely exert cytotoxic activity on non-transformed cells. In the present study, we therefore evaluated interactions between TRAIL and IER3 via co-immunoprecipitation and immunofluorescence analyses, leading us to determine that these two proteins were able to drive the apoptotic death of hepatocellular carcinoma (HCC) cells and to disrupt their proliferative and migratory abilities both in vitro and in vivo. From a mechanistic perspective, we determined that TRAIL and IER3 were capable of inhibiting Wnt/β-catenin signaling. Together, these results indicate that TRAIL can control the pathogenesis of HCC at least in part via interacting with IER3 to inhibit Wnt/β-catenin signaling, thus indicating that this TRAIL/IER3/β-catenin axis may be a viable therapeutic target in HCC patients.


Author(s):  
Jun-Jie Hu ◽  
Cui Zhou ◽  
Xin Luo ◽  
Sheng-Zheng Luo ◽  
Zheng-Hong Li ◽  
...  

Abstract Background Increasing evidence has demonstrated that long noncoding RNAs (lncRNAs) have regulatory functions in hepatocellular carcinoma (HCC). The link between lincSCRG1 and HCC remains unclear. Methods To explore the lincSCRG1 regulation axis, bioinformatics, RIP and luciferase reporter assay were performed. The expressions of lincSCRG1-miR26a-SKP2 were detected in HCC tissues and cell lines through qPCR and western blot. The functions of HCC cells were investigated through in vitro assays (MTT, colony formation, transwell and flow cytometry) and the inner effect of lincSCRG1-miR26a in vivo was evaluated by xenografts and liver metatstatic nude mice models. Results LincSCRG1 was found to be strongly elevated in human HCC tissues and cell lines. MiR26a and S phase kinase-related protein 2 (SKP2) were predicted as the target miRNA for lincSCRG1 and the target gene for miR26a with direct binding sites, respectively. LincSCRG1 was verified as a competing endogenous RNA (ceRNA) via negative regulation of miR26a and derepression of SKP2 in HCC cells. Both overexpression of lincSCRG1 (ov-lincSCRG1) and inhibition of miR26a (in-miR26a) obviously stimulated cellular viability, colony formation, migration and proliferation of S phase cells and also significantly increased the protein levels of cyclinD1, CDK4, MMP2/3/9, Vimentin, and N-cadherin or inhibited the protein level of E-cadherin of HCC cells, while knockdown of lincSCRG1 (sh-lincSCRG1) and upregulation of miR26a (mi-miR26a) had the opposite effects on HCC cells. Cotransfection of in-miR26a or overexpression of SKP2 (ov-SKP2) with sh-lincSCRG1 could rescue the anticancer functions of sh-lincSCRG1, including suppressing proliferation and migration of HCC cells. Additionally, sh-lincSCRG1 could effectively inhibit the growth of subcutaneous xenograft tumours and lung metastasis, while the anticancer effect of sh-lincSCRG1 could be reversed by cotransfection of in-miR26a. Conclusions LincSCRG1 acts as a ceRNA of miR26a to restrict its ability to derepress SKP2, thereby inducing the proliferation and migration of HCC cells in vitro and in vivo. Depletion of lincSCRG1 could be used as a potential therapeutic approach in HCC.


2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Heyun Zhang ◽  
Zhangyu Zheng ◽  
Rongqin Zhang ◽  
Yongcong Yan ◽  
Yaorong Peng ◽  
...  

AbstractHepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. SET and MYND domain-containing protein 3 (SMYD3) has been shown to promote the progression of various types of human cancers, including liver cancer; however, the detailed molecular mechanism is still largely unknown. Here, we report that SMYD3 expression in HCC is an independent prognostic factor for survival and promotes the proliferation and migration of HCC cells. We observed that SMYD3 upregulated sphingosine-1-phosphate receptor 1 (S1PR1) promoter activity by methylating histone 3 (H3K4me3). S1PR1 was expressed at high levels in HCC samples, and high S1PR1 expression was associated with shorter survival. S1PR1 expression was also positively correlated with SMYD3 expression in HCC samples. We confirmed that SMYD3 promotes HCC cell growth and migration in vitro and in vivo by upregulating S1PR1 expression. Further investigations revealed that SMYD3 affects critical signaling pathways associated with the progression of HCC through S1PR1. These findings strongly suggest that SMYD3 has a crucial function in HCC progression that is partially mediated by histone methylation at the downstream gene S1PR1, which affects key signaling pathways associated with carcinogenesis and the progression of HCC.


Author(s):  
Qinhua Liu ◽  
Ruonan Ran ◽  
Zhengsheng Wu ◽  
Xiaodan Li ◽  
Qingshu Zeng ◽  
...  

The present study was directed toward laying new findings for Extranodal natural killer/T-cell lymphoma (ENKL)-oriented therapy with a focus on long non-coding RNA (lncRNA)–microRNAs (miRNAs)–mRNA interaction. The expression and function of XIST (X-inactive specific transcript) were analyzed both in vivo and in vitro. The online database of lncRNA-miRNA interaction was used to screen the target of XIST, and miR-497 was selected. Next, the predicted binding between XIST and miR-497, and the dynamic effect of XIST and miR-497 on downstream Bcl-w was evaluated. We found that XIST dramatically increased in the blood of ENKL patients and cell lines. XIST knockdown suppressed the cell proliferation and migration in vivo and in vitro. Herein, we confirmed the negative interaction between XIST and miR-497. Moreover, XIST knockdown reduced the protein levels of Bcl-w, a downstream target of miR-497. XIST sponges miR-497 to promote Bcl-w expression, and finally modulating ENKL cell proliferation and migration. To be interested, inhibition of Bcl-w by ABT737 can overcome the high expression of XIST, and suppressed the ENKL proliferation and migration by inducing apoptosis. This study provided a novel experimental basis for ENKL-oriented therapy with a focus on the lncRNA–miRNA–mRNA interaction.


2020 ◽  
Author(s):  
Han Hong ◽  
Chengjun Sui ◽  
Tao Qian ◽  
Xiaoyong Xu ◽  
Xiang Zhu ◽  
...  

Abstract Background: Long-chain non-coding RNA (LncRNA) plays a key role in the biological processes of tumors. LncRNA CASC15 has been shown to be involved in the development of a variety of tumors. The study aimed to elucidate the mechanism of lncRNA CASC15 in the progression of hepatocellular carcinomas (HCC).Methods: qRT-PCR was used to detect the expression levels of CASC15, miR-2355-5p and Six1 mRNA in HCC tissues and cells. Six1 protein expression levels were detected by Western Blot. CCK-8 experiment, colony formation experiment, Edu staining and Transwell experiment analysis were used to analyze the effects of CASC15, miR-2355-5p and Six1 on cell proliferation, cell invasion and migration. The relationship between CASC15, miR-2355-5p and Six1 was analyzed using bioinformatics analysis and Luciferase.Result: CASC15 was raised in HCC tissues and HCC cells. Down-regulation of CASC15 inhibited the growth, migration, invasion and tumor growth of HCC cells. The expression level of miR-2355-5p was reduced in HCC tissues. In addition, miR-2355-5p inhibitor induced the growth, migration and invasion of HCC cells. MiR-2355-5p was predicted to be a downstream target of CASC15. The expression level of miR-2355-5p was negatively correlated with CASC15 in HCC tumor tissues. Six1 was predicted to be a downstream target of miR-30a-5p. In vitro and in vivo results showed that CASC15/miR-2355-5p can regulate Six1.Conclusion: LncCASC15 regulated the proliferation and invasion of Six1 by binding with miR-2355-5p in HCC, suggesting that CASC15 may be a potential target for HCC.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Nataša Pavlović ◽  
Carlemi Calitz ◽  
Kess Thanapirom ◽  
Guiseppe Mazza ◽  
Krista Rombouts ◽  
...  

Hepatocellular carcinoma (HCC) is a liver tumor that usually arises in patients with cirrhosis. Hepatic stellate cells are key players in the progression of HCC, as they create a fibrotic micro-environment and produce growth factors and cytokines that enhance tumor cell proliferation and migration. We assessed the role of endoplasmic reticulum (ER) stress in the cross-talk between stellate cells and HCC cells. Mice with a fibrotic HCC were treated with the IRE1α-inhibitor 4μ8C, which reduced tumor burden and collagen deposition. By co-culturing HCC-cells with stellate cells, we found that HCC-cells activate IREα in stellate cells, thereby contributing to their activation. Inhibiting IRE1α blocked stellate cell activation, which then decreased proliferation and migration of tumor cells in different in vitro 2D and 3D co-cultures. In addition, we also observed cell-line-specific direct effects of inhibiting IRE1α in tumor cells.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Guijun He ◽  
Wenfeng Yao ◽  
Liang Li ◽  
Yang Wu ◽  
Guojian Feng ◽  
...  

Abstract Background LOXL1-AS1 is a long non-coding RNA (lncRNA) that plays crucial roles in various cancers. However, the functional role of LOXL1-AS1 in laryngocarcinoma remains unclear. Thus we planned to probe into the function and underlying mechanism of LOXL1-AS1 in laryngocarcinoma. Methods Gene expression was evaluated in laryngocarcinoma cells using RT-qPCR. The ability of cell proliferation and migration was assessed by CCK8, colony formation, wound healing and transwell assays. The interaction among LOXL1-AS1, miR-589-5p and TRAF6 was detected by Ago2-RIP, RNA pull down and luciferase reporter assays. Results LOXL1-AS1 was overexpressed in laryngocarcinoma cells. Silencing of LOXL1-AS1 suppressed cell proliferation, migration and EMT in laryngocarcinoma. Moreover, miR-589-5p, the downstream of LOXL1-AS1, directly targeted TRAF6 in laryngocarcinoma. Importantly, LOXL1-AS1 augmented TRAF6 expression in laryngocarcinoma cells by sequestering miR-589-5p. Besides, miR-589-5p worked as a tumor-inhibitor while TRAF6 functioned as a tumor-facilitator in laryngocarcinoma. Of note, rescue experiments both in vitro and in vivo validated that LOXL1-AS1 aggravated the malignancy in laryngocarcinoma by targeting miR-589-5p/TRAF6 pathway. Conclusions LOXL1-AS1 promotes the proliferation and migration of laryngocarcinoma cells through absorbing miR-589-5p to upregulate TRAF6 expression.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Lei Zhang ◽  
Jing Zhang ◽  
Pengfei Li ◽  
Ting Li ◽  
Zhiqin Zhou ◽  
...  

AbstractMacrophage-derived exosomes (Mφ-Exo) have multidimensional involvement in tumor initiation, progression, and metastasis, but their regulation in hepatocellular carcinoma (HCC) is not fully understood. RBPJ has been implicated in macrophage activation and plasticity. In this study we assess the role of exosomes derived from RBPJ-overexpressed macrophages (RBPJ+/+ Mφ-Exo) in HCC. The circular RNA (circRNA) profiles in RBPJ+/+ Mφ-Exo and THP-1-like macrophages (WT Mφ)-Exo was evaluated using circRNA microarray. CCK-8, Transwell, and flow cytometry analyses were used to evaluate the function of Mφ-Exo-circRNA on HCC cells. Luciferase reporter assays, RNA immunoprecipitation, and Pearson’s correlation analysis were used to confirm interactions. A nude mouse xenograft model was used to further analyze the functional significance of Mφ-Exo-cirRNA in vivo. Our results shown that hsa_circ_0004658 is upregulated in RBPJ+/+ Mφ-Exo compared to WT Mφ-Exo. RBPJ+/+ Mφ-Exo and hsa_circ_0004658 inhibits proliferation and promotes apoptosis in HCC cells, whereas hsa_circ_0004658 knockdown stimulated cell proliferation and migration but restrained apoptosis in vitro and promotes tumor growth in vivo. The effects of RBPJ+/+ Mφ-Exo on HCC cells can be reversed by the hsa_circ_0004658 knockdown. Mechanistic investigations revealed that hsa_circ_0004658 acts as a ceRNA of miR-499b-5p, resulting in the de-repression of JAM3. These results indicate that exosome circRNAs secreted from RBPJ+/+ Mφ inhibits tumor progression through the hsa_circ_0004658/miR-499b-5p/JAM3 pathway and hsa_circ_0004658 may be a diagnostic biomarker and potential target for HCC therapy.


Author(s):  
Fenrong Chen ◽  
Yan Wang ◽  
Yan Cheng ◽  
Haitao Shi ◽  
Hong Li ◽  
...  

Hepatocellular carcinoma (HCC) is a considerable threat to human life, and patients with HCC are usually diagnosed in the later stages. Although treatment for HCC has recently advanced rapidly, novel targets for HCC are still desperately needed, especially for precision medicine. Here, we identified an HCC enriched long non-coding RNA, AC006262.5, that promoted the proliferation, migration, and invasion of HCC both in vitro and in vivo. In addition, our results revealed that AC006262.5 bound to and regulated miR-7855-5p, a tumor suppressive miRNA in HCC. Moreover, our data illustrated that AC006262.5 regulated the expression of BPY2C via miR-7855-5p. Finally, we found that AC006262.5 and miR-7855-5p formed a regulatory loop. Upregulation of AC006262.5 resulted in the decreased expression of miR-7855-5p, and downregulation of miR-7855-5p further facilitated the expression of AC006262.5. Our study provides novel targets for HCC diagnosis and treatment and sheds light on the lncRNA-miRNA regulatory nexus that controls the pathology of HCC.


Sign in / Sign up

Export Citation Format

Share Document