scholarly journals Long non-coding RNAs HERH-1 and HERH-4 facilitate cyclin A2 expression and accelerate cell cycle progression in advanced hepatocellular carcinoma

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tao Liu ◽  
Qiao Shi ◽  
Lei Yang ◽  
Shusen Wang ◽  
Hongli Song ◽  
...  

Abstract Background The advanced hepatocellular carcinoma (HCC), such as the recurrent tumor after liver transplantation (LT), is an obstacle of HCC treatment. The aim of this study was to discover the underlying mechanism of HCC progression caused by non-coding RNAs (ncRNAs). Methods To this end, we investigated the selected patient cohort of matching primary and recurrent HCC after receiving LT. The recurrent tumors after LT were regarded as clinical models of the advanced HCC. Microarrays were used to profile lncRNA and mRNA expression in HCC recurrent and primary tissue samples. The mRNA profile characteristics were analyzed by bioinformatics. Two cell lines, HepG2 and QGY-7703, were used as HCC cell models. The protein-coding potential, length, and subcellular location of the interested lncRNAs were examined by bioinformatics, Northern blot, fluorescent in situ hybridization (FISH), and quantitative RT-PCR (qRT-PCR) assays. HCC cell proliferation was detected by CCK-8, doubling time and proliferation marker gene quantitation assays. DNA replication during the cell cycle was measured by EdU/PI staining and flow cytometry analyses. Promoter activity was measured using a luciferase reporter assay. Interactions between DNA, RNA, and protein were examined by immunoprecipitation and pull-down assays. The miRNA-target regulation was validated by a fluorescent reporter assay. Results Both lncRNA and mRNA profiles exhibited characteristic alterations in the recurrent tumor cells compared with the primary HCC. The mRNA profile in the HCC recurrent tissues, which served as model of advanced HCC, showed an aberrant cell cycle regulation. Two lncRNAs, the highly expressed lncRNA in recurrent HCC (HERH)-1 and HERH-4, were upregulated in the advanced HCC cells. HERH-1/4 enhanced proliferation and promoted DNA replication and G1-S transition during the cell cycle in HCC cells. HERH-1 interacted with the transcription factor CREB1. CREB1 enhanced cyclin A2 (CCNA2) transcription, depending on HERH-1-CREB1 interaction. HERH-4 acted as an miR-29b/c sponge to facilitate CCNA2 protein translation through a competing endogenous RNA (ceRNA) pathway. Conclusions The oncogenic lncRNA HERH-1/4 promoted CCNA2 expression at the transcriptional and post-transcriptional levels and accelerated cell cycle progression in HCC cells. The HERH-1-CREB1-CCNA2 and HERH-4-miR-29b/c-CCNA2 axes served as molecular stimuli for HCC advance.

Author(s):  
Hu Chen ◽  
Lequn Bao ◽  
Jianhua Hu ◽  
Dongde Wu ◽  
Xianli Tong

BackgroundIn recent years, microRNA-1-3p (miR-1-3p) has been linked to the progression of multiple cancers, whereas little is known about its role in hepatocellular carcinoma (HCC). Herein, we investigated the function of miR-1-3p in HCC, and its regulatory function on origin recognition complex subunit 6 (ORC6).MethodsQuantitative real-time polymerase chain reaction (qRT-PCR) was performed for detecting the expression levels of miR-1-3p and ORC6 mRNA in HCC samples and cell lines. ORC6 expression at the protein level was quantified by Western blot. After gain-of-function and loss-of-function models were established, cell counting kit-8 (CCK-8) assays, Transwell assays, flow cytometry, and 5-Ethynyl-2′-deoxyuridine (EdU) assay were performed for examining cell proliferation, migration, invasion, cell cycle, and apoptosis. The targeting relationship between miR-1-3p and ORC6 was confirmed with bioinformatic analysis and dual-luciferase reporter assays.ResultsThe expression of miR-1-3p was reduced in HCC samples and cell lines. Overexpression of miR-1-3p suppressed the proliferation, migration, and invasion, and induced cell-cycle arrest and apoptosis of HCC cells, whereas the opposite effects were induced by miR-1-3p inhibition. ORC6 is identified as a novel target of miR-1-3p, the expression of which is negatively correlated with miR-1-3p expression in HCC tissues. ORC6 overexpression facilitated the proliferation, migration, invasion, and cell cycle progression, and reduced apoptosis of HCC cells, whereas the opposite effects were induced by ORC6 knockdown. What is more, ORC6 overexpression counteracted the biological functions of miR-1-3p in HCC cells.ConclusionMiR-1-3p targets ORC6 to suppress the proliferation, migration, invasion, and cell cycle progression, and promote apoptosis of HCC cells.


2020 ◽  
Author(s):  
Pan Zhang ◽  
Xiaoyan Yang ◽  
Zhongming Zha ◽  
Yumeng Zhu ◽  
Guoqiang Zhang ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC), comprises of the major primary liver cancer, is one of the most lethal malignancies in the world [1]. Increasing evidence has demonstrated that chromobox protein homolog 3 (CBX3) functioned as an oncogene in different cancers. However, its expression profiles and biological functions in HCC remain exactly unknown. Methods Data of CBX3 expression in HCC acquired from TCGA and GEO databases were analyzed. The biological functions of CBX3 in HCC were examined by in vitro experiments. Bioinformatics analysis, qRT-PCR and western blot were performed to explpore the mechanism of CBX3 involved in HCC. Results CBX3 mRNA was upregulated in HCC tissues, and overexpression of CBX3 mRNA was negatively correlated with malignancies and poor prognosis in HCC patients. Knocking down of CBX3 induced slower growth, less migration and fewer invasions of the HCC cells in vitro. Moreover, bioinformatics analysis and experimental observation indicated that CBX3 expression was correlated with cell cycle regulation proteins of HCC cells. Finally, Starbase predicted that the miR-139 could directly target CBX3 in HCC; Confirmatory experiments verified that miR-139 overexpression attenuated the HCC cells proliferation and migration, which could be reversed by overexpressing CBX3 concurrently. Conclusion Our results concluded that miR-139/CBX3 axis may involve in the HCC development through regulating cell cycle progression and may be a promising target in the treatment of HCC.


2020 ◽  
Author(s):  
Yongfang Ma ◽  
Ruyue Xu ◽  
Xueke Liu ◽  
Yinci Zhang ◽  
Li Song ◽  
...  

Abstract Background: Due to the reactivation of ERK signaling in sorafenib-resisitant hepatocellular carcinoma (HCC) cells, in this study, the anti-cancer effect of LY3214996 (selective ERK1/2 inhibitor) combined with sorafenib on HCC cells was evaluated. Methods: Phosphorylation of the key kinases in the Ras/Raf/MAPK and PI3K/Akt pathways were detected using Western blot. Cells proliferation, migration, cell cycle and apoptosis were evaluated in Huh7 and Huh7 R cells. Results: LY3214996 significantly reduced phosphorylation levels of the tested kinases of Ras/Raf/MAPK and PI3K/Akt pathways including p-c-Raf, p-P90RSK, p-S6K and p-eIF4EBP1 activated by sorafenib, despite increased p-ERK1/2 levels. It was found that LY3214996 enhanced the anti-proliferation, anti-migration, blocking cell cycle progression and pro-apoptotic effects of sorafenib on Huh7 R cells. Conclusions: The reactivation of ERK1/2 might be highly related to molecular mechanism of acquired drug resistance. LY3214996 combined with sorafenib enhanced anti-tumor effects in HCC. Consequently, combined treatment of LY3214996 and sorafenib provides a second-line therapy for acquired resistant in advanced HCC.


2020 ◽  
Vol 10 ◽  
Author(s):  
Soudeh Ghafouri-Fard ◽  
Hamed Shoorei ◽  
Farhad Tondro Anamag ◽  
Mohammad Taheri

Cell cycle is regulated by a number of proteins namely cyclin-dependent kinases (CDKs) and their associated cyclins which bind with and activate CDKs in a phase specific manner. Additionally, several transcription factors (TFs) such as E2F and p53 and numerous signaling pathways regulate cell cycle progression. Recent studies have accentuated the role of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in the regulation of cell cycle. Both lncRNAs and miRNAs interact with TFs participating in the regulation of cell cycle transition. Dysregulation of cell cycle regulatory miRNAs and lncRNAs results in human disorders particularly cancers. Understanding the role of lncRNAs, miRNAs, and TFs in the regulation of cell cycle would pave the way for design of anticancer therapies which intervene with the cell cycle progression. In the current review, we describe the role of lncRNAs and miRNAs in the regulation of cell cycle and their association with human malignancies.


2020 ◽  
Author(s):  
Dong-Yan Zhang ◽  
Qing-Can Sun ◽  
Xue-Jing Zou ◽  
Yang Song ◽  
Wen-Wen Li ◽  
...  

Abstract Background: Dysregulations of lncRNA are responsible for cancer initiation and development, positioning lncRNAs as not only biomarkers but also promising therapeutic targets for cancer treatment. Growing number of lncRNAs have been reported in HCC but their functional and mechanistic roles remain unclear. Methods: Gene Set Enrichment Analysis was used to investigate the molecular mechanism of lncRNA UPK1A antisense RNA 1 (UPK1A-AS1). CCK-8 assay, EdU assay, flow cytometry, western blot, and xenograft assay were used to confirm the role of UPK1A-AS1 in the proliferation of HCC cells both in vitro and in vivo. Bioinformatics analysis and qRT-PCR were performed to explore the interplay between UPK1A-AS1 and Enhancer of Zeste Homologue 2 (EZH2). RNA immunoprecipitation (RIP), RNA-pull down assay, western blot, qRT-PCR, and were conducted to confirm the interaction between UPK1A-AS1 and EZH2. The interaction between UPK1A-AS1 and miR-138-5p was examined by luciferase reporter and RIP assays. Finally, the expression level and prognosis value of UPK1A-AS1 in HCC were analyzed using RNA-seq data from TCGA datasets.Results: We showed that UPK1A-AS1, a newly identified lncRNA, promoted cellular proliferation and tumor growth by accelerating cell cycle progression. Cell cycle related genes including CCND1, CDK2, CDK4, CCNB1 and CCNB2 were significantly upregulated in HCC cells with UPK1A-AS1 overexpression. Furthermore, overexpression of UPK1A-AS1 could protect HCC cells from cis-platinum toxicity. Mechanistically, UPK1A-AS1 interacted with EZH2 to mediate its nuclear translocation and reinforce its binding to SUZ12, leading to the increasing trimethylation of H27K3. Targeting EZH2 with specific siRNA impaired UPK1A-AS1-mediated upregulation of proliferation and cell cycle progression related genes. Moreover, miR-138-5p was identified as a direct target of UPK1A-AS1. Additionally, UPK1A-AS1 was significantly upregulated in HCC, and upregulation of UPK1A-AS1 predicted poor prognosis for patients with HCC. Conclusions: Our study reveals that UPK1A-AS1 promotes HCC development by accelerating cell cycle progression via interacting with EZH2 and sponging miR-138-5p, suggesting that UPK1A-AS1 possesses substantial potential as a novel biomarker for HCC prognosis and therapy.


Author(s):  
Dong-Yan Zhang ◽  
Qing-Can Sun ◽  
Xue-Jing Zou ◽  
Yang Song ◽  
Wen-Wen Li ◽  
...  

Abstract Background Dysregulation of long non-coding RNAs (lncRNAs) is responsible for cancer initiation and development, positioning lncRNAs as not only biomarkers but also promising therapeutic targets for cancer treatment. A growing number of lncRNAs have been reported in hepatocellular carcinoma (HCC), but their functional and mechanistic roles remain unclear. Methods Gene Set Enrichment Analysis was used to investigate the molecular mechanism of UPK1A antisense RNA 1 (UPK1A-AS1). Cell Counting Kit-8 assays, EdU assays, flow cytometry, western blotting, and xenograft assays were used to confirm the role of UPK1A-AS1 in the proliferation of HCC cells in vitro and in vivo. Bioinformatics analyses and quantitative polymerase chain reaction (qRT-PCR) were performed to explore the interplay between UPK1A-AS1 and enhancer of zeste homologue 2 (EZH2). RNA immunoprecipitation (RIP), RNA pull-down assays, western blotting, and qRT-PCR were conducted to confirm the interaction between UPK1A-AS1 and EZH2. The interaction between UPK1A-AS1 and miR-138-5p was examined by luciferase reporter and RIP assays. Finally, the expression level and prognosis value of UPK1A-AS1 in HCC were analyzed using RNA sequencing data from The Cancer Genome Atlas datasets. Results We showed that UPK1A-AS1, a newly identified lncRNA, promoted cellular proliferation and tumor growth by accelerating cell cycle progression. Cell cycle-related genes, including CCND1, CDK2, CDK4, CCNB1, and CCNB2, were significantly upregulated in HCC cells overexpressing UPK1A-AS1. Furthermore, overexpression of UPK1A-AS1 could protect HCC cells from cis-platinum toxicity. Mechanistically, UPK1A-AS1 interacted with EZH2 to mediate its nuclear translocation and reinforce its binding to SUZ12, leading to increased H27K3 trimethylation. Targeting EZH2 with specific small interfering RNA impaired the UPK1A-AS1-mediated upregulation of proliferation and cell cycle progression-related genes. Moreover, miR-138-5p was identified as a direct target of UPK1A-AS1. Additionally, UPK1A-AS1 was significantly upregulated in HCC, and the upregulation of UPK1A-AS1 predicted poor prognosis for patients with HCC. Conclusions Our study revealed that UPK1A-AS1 promotes HCC development by accelerating cell cycle progression through interaction with EZH2 and sponging of miR-138-5p, suggesting that UPK1A-AS1 possesses substantial potential as a novel biomarker for HCC prognosis and therapy.


Author(s):  
Keyan Wu ◽  
Man Teng ◽  
Wei Zhou ◽  
Fanglin Lu ◽  
Yang Zhou ◽  
...  

Objective: The current study aimed to illustrate whether wogonin influences HCC cell cycle progression and apoptosis by regulating Hippo signaling. Methods: The effects of wogonin on HCC cell viability, cell cycle progression and apoptosis were analyzed by utilizing CCK-8 and flow cytometry. RNA-seq was employed to analyze the expression profiles between wogonin-treated and control HCC cells, and the selected RNA-seq transcripts were validated by reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). Immunofluorescence staining was performed to detect the distribution of YAP/TAZ in the nucleus and cytoplasm in HCC cells. Western blotting and human apoptosis array were performed to examine the expression of the indicated genes. Results: We demonstrated that wogonin induced cell cycle arrest and apoptosis of HCC cell lines SMMC7721 and HCCLM3. RNA-seq analysis showed enrichment in genes associated with cell cycle progression and apoptosis following incubation with wogonin in HCC cells, and the pathways analysis further identified that Hippo signaling pathways highly altered in wogonin-treated cells. Specifically, wogonin increased the phosphorylation of MOB1 and LATS1, promoted translocation of endogenous YAP and TAZ from the nucleus to the cytoplasm, and facilitated phosphorylation of YAP and TAZ. Notably, overexpression of YAP or TAZ partially abrogated the wogonin-mediated HCC cell cycle arrest and apoptosis, and reversed wogonin-mediated suppression of Claspin. Conclusion: Wogonin induced HCC cell cycle arrest and apoptosis probably by activating MOB1-LATS1 signaling to inhibit the activation of YAP and TAZ, and then decrease the expression of Claspin, suggesting that the understanding of the molecular mechanisms underlying wogonin-induced cell cycle arrest and apoptosis may be useful in HCC therapeutics.


2020 ◽  
Author(s):  
Yongfang Ma ◽  
Ruyue Xu ◽  
Xueke Liu ◽  
Yinci Zhang ◽  
Li Song ◽  
...  

Abstract Background: Due to the reactivation of ERK signaling in sorafenib-resisitant hepatocellular carcinoma (HCC) cells, in this study, the anti-cancer effect of LY3214996 (selective ERK1/2 inhibitor) combined with sorafenib on HCC cells was evaluated. Methods: Phosphorylation of the key kinases in the Ras/Raf/MAPK and PI3K/Akt pathways were detected using Western blot. Cells proliferation, migration, cell cycle and apoptosis were evaluated in Huh7 and Huh7R cells. Results: LY3214996 significantly reduced phosphorylation levels of the tested kinases of Ras/Raf/MAPK and PI3K/Akt pathways including p-c-Raf, p-P90RSK, p-S6K and p-eIF4EBP1 activated by sorafenib, despite increased p-ERK1/2 levels. It was found that LY3214996 enhanced the anti-proliferation, anti-migration, blocking cell cycle progression and pro-apoptotic effects of sorafenib on Huh7R cells.Conclusions: The reactivation of ERK1/2 might be highly related to molecular mechanism of acquired drug resistance. LY3214996 combined with sorafenib enhanced anti-tumor effects in HCC. Consequently, combined treatment of LY3214996 and sorafenib provides a second-line therapy for acquired resistant in advanced HCC.


2020 ◽  
Author(s):  
Pan Zhang ◽  
Xiaoyan Yang ◽  
Zhongming Zha ◽  
Yumeng Zhu ◽  
Guoqiang Zhang ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC), comprises of the major primary liver cancer, is one of the most lethal malignancies in the world [1]. Increasing evidence has demonstrated that chromobox protein homolog 3 (CBX3) functioned as an oncogene in different cancers. However, its expression profiles and biological functions in HCC remain exactly unknown. Methods Data of CBX3 expression in HCC acquired from TCGA and GEO databases were analyzed. The biological functions of CBX3 in HCC were examined by in vitro experiments. Bioinformatics analysis, qRT-PCR and western blot were performed to explpore the mechanism of CBX3 involved in HCC. Results CBX3 mRNA was upregulated in HCC tissues, and overexpression of CBX3 mRNA was negatively correlated with malignancies and poor prognosis in HCC patients. Knocking down of CBX3 induced slower growth, less migration and fewer invasions of the HCC cells in vitro. Moreover, bioinformatics analysis and experimental observation indicated that CBX3 expression was correlated with cell cycle regulation proteins of HCC cells. Finally, Starbase predicted that the miR-139 could directly target CBX3 in HCC; Confirmatory experiments verified that miR-139 overexpression attenuated the HCC cells proliferation and migration, which could be reversed by overexpressing CBX3 concurrently. Conclusion Our results concluded that miR-139/CBX3 axis may involve in the HCC development through regulating cell cycle progression and may be a promising target in the treatment of HCC.


2020 ◽  
Author(s):  
Dong-Yan Zhang ◽  
Qing-Can Sun ◽  
Xue-Jing Zou ◽  
Yang Song ◽  
Wen-Wen Li ◽  
...  

Abstract Background: Dysregulation of long non-coding RNAs (lncRNAs) is responsible for cancer initiation and development, positioning lncRNAs as not only biomarkers but also promising therapeutic targets for cancer treatment. A growing number of lncRNAs have been reported in hepatocellular carcinoma (HCC), but their functional and mechanistic roles remain unclear. Methods: Gene Set Enrichment Analysis was used to investigate the molecular mechanism of UPK1A antisense RNA 1 (UPK1A-AS1). Cell Counting Kit-8 assays, EdU assays, flow cytometry, western blotting, and xenograft assays were used to confirm the role of UPK1A-AS1 in the proliferation of HCC cells in vitro and in vivo . Bioinformatics analyses and quantitative polymerase chain reaction (qRT-PCR) were performed to explore the interplay between UPK1A-AS1 and enhancer of zeste homologue 2 (EZH2). RNA immunoprecipitation (RIP), RNA pull-down assays, western blotting, and qRT-PCR were conducted to confirm the interaction between UPK1A-AS1 and EZH2. The interaction between UPK1A-AS1 and miR-138-5p was examined by luciferase reporter and RIP assays. Finally, the expression level and prognosis value of UPK1A-AS1 in HCC were analyzed using RNA sequencing data from The Cancer Genome Atlas datasets. Results: We showed that UPK1A-AS1, a newly identified lncRNA, promoted cellular proliferation and tumor growth by accelerating cell cycle progression. Cell cycle-related genes, including CCND1, CDK2, CDK4, CCNB1, and CCNB2, were significantly upregulated in HCC cells overexpressing UPK1A-AS1. Furthermore, overexpression of UPK1A-AS1 could protect HCC cells from cis-platinum toxicity. Mechanistically, UPK1A-AS1 interacted with EZH2 to mediate its nuclear translocation and reinforce its binding to SUZ12, leading to increased H27K3 trimethylation. Targeting EZH2 with specific small interfering RNA impaired the UPK1A-AS1-mediated upregulation of proliferation and cell cycle progression-related genes. Moreover, miR-138-5p was identified as a direct target of UPK1A-AS1. Additionally, UPK1A-AS1 was significantly upregulated in HCC, and the upregulation of UPK1A-AS1 predicted poor prognosis for patients with HCC. Conclusions: Our study revealed that UPK1A-AS1 promotes HCC development by accelerating cell cycle progression through interaction with EZH2 and sponging of miR-138-5p, suggesting that UPK1A-AS1 possesses substantial potential as a novel biomarker for HCC prognosis and therapy.


Sign in / Sign up

Export Citation Format

Share Document