scholarly journals Long noncoding RNA UPK1A-AS1 indicates poor prognosis of hepatocellular carcinoma and promotes cell proliferation through interacting with EZH2

2020 ◽  
Author(s):  
Dong-Yan Zhang ◽  
Qing-Can Sun ◽  
Xue-Jing Zou ◽  
Yang Song ◽  
Wen-Wen Li ◽  
...  

Abstract Background: Dysregulations of lncRNA are responsible for cancer initiation and development, positioning lncRNAs as not only biomarkers but also promising therapeutic targets for cancer treatment. Growing number of lncRNAs have been reported in HCC but their functional and mechanistic roles remain unclear. Methods: Gene Set Enrichment Analysis was used to investigate the molecular mechanism of lncRNA UPK1A antisense RNA 1 (UPK1A-AS1). CCK-8 assay, EdU assay, flow cytometry, western blot, and xenograft assay were used to confirm the role of UPK1A-AS1 in the proliferation of HCC cells both in vitro and in vivo. Bioinformatics analysis and qRT-PCR were performed to explore the interplay between UPK1A-AS1 and Enhancer of Zeste Homologue 2 (EZH2). RNA immunoprecipitation (RIP), RNA-pull down assay, western blot, qRT-PCR, and were conducted to confirm the interaction between UPK1A-AS1 and EZH2. The interaction between UPK1A-AS1 and miR-138-5p was examined by luciferase reporter and RIP assays. Finally, the expression level and prognosis value of UPK1A-AS1 in HCC were analyzed using RNA-seq data from TCGA datasets.Results: We showed that UPK1A-AS1, a newly identified lncRNA, promoted cellular proliferation and tumor growth by accelerating cell cycle progression. Cell cycle related genes including CCND1, CDK2, CDK4, CCNB1 and CCNB2 were significantly upregulated in HCC cells with UPK1A-AS1 overexpression. Furthermore, overexpression of UPK1A-AS1 could protect HCC cells from cis-platinum toxicity. Mechanistically, UPK1A-AS1 interacted with EZH2 to mediate its nuclear translocation and reinforce its binding to SUZ12, leading to the increasing trimethylation of H27K3. Targeting EZH2 with specific siRNA impaired UPK1A-AS1-mediated upregulation of proliferation and cell cycle progression related genes. Moreover, miR-138-5p was identified as a direct target of UPK1A-AS1. Additionally, UPK1A-AS1 was significantly upregulated in HCC, and upregulation of UPK1A-AS1 predicted poor prognosis for patients with HCC. Conclusions: Our study reveals that UPK1A-AS1 promotes HCC development by accelerating cell cycle progression via interacting with EZH2 and sponging miR-138-5p, suggesting that UPK1A-AS1 possesses substantial potential as a novel biomarker for HCC prognosis and therapy.

2020 ◽  
Author(s):  
Dong-Yan Zhang ◽  
Qing-Can Sun ◽  
Xue-Jing Zou ◽  
Yang Song ◽  
Wen-Wen Li ◽  
...  

Abstract Background Dysregulations of lncRNA are responsible for cancer initiation and development, positioning lncRNAs as not only biomarkers but also promising therapeutic targets for cancer treatment. Growing number of lncRNAs have been reported in HCC but their functional and mechanistic roles remain unclear. Methods Gene Set Enrichment Analysis was used to investigate the molecular mechanism of lncRNA UPK1A antisense RNA 1 (UPK1A-AS1). CCK-8 assay, EdU assay, flow cytometry, western blot, and xenograft assay were used to confirm the role of UPK1A-AS1 in proliferation of HCC cells both in vitro and in vivo. Bioinformatics analysis and qRT-PCR were performed to explore the interplay between UPK1A-AS1 and Enhancer of Zeste Homologue 2 (EZH2). RNA immunoprecipitation, RNA-pull down assay, western blot, qRT-PCR, and were conducted to confirm the interaction between UPK1A-AS1 and EZH2. Finally, the expression level and prognosis value of UPK1A-AS1 in HCC were analyzed using RNA-seq data from TCGA datasets. Results We showed that UPK1A-AS1, a newly identified lncRNA, promoted cellular proliferation and tumor growth by accelerating cell cycle progression. Cell cycle related genes including CyclinD1, CDK2, CDK4, CCNB1 and CCNB2 were significantly upregulated in HCC cells with UPK1A-AS1 overexpression. Furthermore, overexpression of UPK1A-AS1 could protect HCC cells from cis-platinum toxicity. Mechanistically, UPK1A-AS1 interacted with EZH2 to mediate its nuclear translocation and reinforce its binding to SUZ12, leading to the increasing trimethylation of H27K3. Targeting EZH2 with specific siRNA impaired UPK1A-AS1-mediated upregulation of proliferation and cell cycle progression related genes. Moreover, UPK1A-AS1 was significantly upregulated in HCC, and upregulation of UPK1A-AS1 predicted poor prognosis for patients with HCC. Conclusions Our study reveals that UPK1A-AS1 promotes HCC development by accelerating cell cycle progression in an EZH2-dependent manner, suggesting that UPK1A-AS1 possesses substantial potential as a novel biomarker for HCC prognosis and therapy.


Author(s):  
Dong-Yan Zhang ◽  
Qing-Can Sun ◽  
Xue-Jing Zou ◽  
Yang Song ◽  
Wen-Wen Li ◽  
...  

Abstract Background Dysregulation of long non-coding RNAs (lncRNAs) is responsible for cancer initiation and development, positioning lncRNAs as not only biomarkers but also promising therapeutic targets for cancer treatment. A growing number of lncRNAs have been reported in hepatocellular carcinoma (HCC), but their functional and mechanistic roles remain unclear. Methods Gene Set Enrichment Analysis was used to investigate the molecular mechanism of UPK1A antisense RNA 1 (UPK1A-AS1). Cell Counting Kit-8 assays, EdU assays, flow cytometry, western blotting, and xenograft assays were used to confirm the role of UPK1A-AS1 in the proliferation of HCC cells in vitro and in vivo. Bioinformatics analyses and quantitative polymerase chain reaction (qRT-PCR) were performed to explore the interplay between UPK1A-AS1 and enhancer of zeste homologue 2 (EZH2). RNA immunoprecipitation (RIP), RNA pull-down assays, western blotting, and qRT-PCR were conducted to confirm the interaction between UPK1A-AS1 and EZH2. The interaction between UPK1A-AS1 and miR-138-5p was examined by luciferase reporter and RIP assays. Finally, the expression level and prognosis value of UPK1A-AS1 in HCC were analyzed using RNA sequencing data from The Cancer Genome Atlas datasets. Results We showed that UPK1A-AS1, a newly identified lncRNA, promoted cellular proliferation and tumor growth by accelerating cell cycle progression. Cell cycle-related genes, including CCND1, CDK2, CDK4, CCNB1, and CCNB2, were significantly upregulated in HCC cells overexpressing UPK1A-AS1. Furthermore, overexpression of UPK1A-AS1 could protect HCC cells from cis-platinum toxicity. Mechanistically, UPK1A-AS1 interacted with EZH2 to mediate its nuclear translocation and reinforce its binding to SUZ12, leading to increased H27K3 trimethylation. Targeting EZH2 with specific small interfering RNA impaired the UPK1A-AS1-mediated upregulation of proliferation and cell cycle progression-related genes. Moreover, miR-138-5p was identified as a direct target of UPK1A-AS1. Additionally, UPK1A-AS1 was significantly upregulated in HCC, and the upregulation of UPK1A-AS1 predicted poor prognosis for patients with HCC. Conclusions Our study revealed that UPK1A-AS1 promotes HCC development by accelerating cell cycle progression through interaction with EZH2 and sponging of miR-138-5p, suggesting that UPK1A-AS1 possesses substantial potential as a novel biomarker for HCC prognosis and therapy.


2020 ◽  
Author(s):  
Dong-Yan Zhang ◽  
Qing-Can Sun ◽  
Xue-Jing Zou ◽  
Yang Song ◽  
Wen-Wen Li ◽  
...  

Abstract Background: Dysregulation of long non-coding RNAs (lncRNAs) is responsible for cancer initiation and development, positioning lncRNAs as not only biomarkers but also promising therapeutic targets for cancer treatment. A growing number of lncRNAs have been reported in hepatocellular carcinoma (HCC), but their functional and mechanistic roles remain unclear. Methods: Gene Set Enrichment Analysis was used to investigate the molecular mechanism of UPK1A antisense RNA 1 (UPK1A-AS1). Cell Counting Kit-8 assays, EdU assays, flow cytometry, western blotting, and xenograft assays were used to confirm the role of UPK1A-AS1 in the proliferation of HCC cells in vitro and in vivo . Bioinformatics analyses and quantitative polymerase chain reaction (qRT-PCR) were performed to explore the interplay between UPK1A-AS1 and enhancer of zeste homologue 2 (EZH2). RNA immunoprecipitation (RIP), RNA pull-down assays, western blotting, and qRT-PCR were conducted to confirm the interaction between UPK1A-AS1 and EZH2. The interaction between UPK1A-AS1 and miR-138-5p was examined by luciferase reporter and RIP assays. Finally, the expression level and prognosis value of UPK1A-AS1 in HCC were analyzed using RNA sequencing data from The Cancer Genome Atlas datasets. Results: We showed that UPK1A-AS1, a newly identified lncRNA, promoted cellular proliferation and tumor growth by accelerating cell cycle progression. Cell cycle-related genes, including CCND1, CDK2, CDK4, CCNB1, and CCNB2, were significantly upregulated in HCC cells overexpressing UPK1A-AS1. Furthermore, overexpression of UPK1A-AS1 could protect HCC cells from cis-platinum toxicity. Mechanistically, UPK1A-AS1 interacted with EZH2 to mediate its nuclear translocation and reinforce its binding to SUZ12, leading to increased H27K3 trimethylation. Targeting EZH2 with specific small interfering RNA impaired the UPK1A-AS1-mediated upregulation of proliferation and cell cycle progression-related genes. Moreover, miR-138-5p was identified as a direct target of UPK1A-AS1. Additionally, UPK1A-AS1 was significantly upregulated in HCC, and the upregulation of UPK1A-AS1 predicted poor prognosis for patients with HCC. Conclusions: Our study revealed that UPK1A-AS1 promotes HCC development by accelerating cell cycle progression through interaction with EZH2 and sponging of miR-138-5p, suggesting that UPK1A-AS1 possesses substantial potential as a novel biomarker for HCC prognosis and therapy.


Author(s):  
Hu Chen ◽  
Lequn Bao ◽  
Jianhua Hu ◽  
Dongde Wu ◽  
Xianli Tong

BackgroundIn recent years, microRNA-1-3p (miR-1-3p) has been linked to the progression of multiple cancers, whereas little is known about its role in hepatocellular carcinoma (HCC). Herein, we investigated the function of miR-1-3p in HCC, and its regulatory function on origin recognition complex subunit 6 (ORC6).MethodsQuantitative real-time polymerase chain reaction (qRT-PCR) was performed for detecting the expression levels of miR-1-3p and ORC6 mRNA in HCC samples and cell lines. ORC6 expression at the protein level was quantified by Western blot. After gain-of-function and loss-of-function models were established, cell counting kit-8 (CCK-8) assays, Transwell assays, flow cytometry, and 5-Ethynyl-2′-deoxyuridine (EdU) assay were performed for examining cell proliferation, migration, invasion, cell cycle, and apoptosis. The targeting relationship between miR-1-3p and ORC6 was confirmed with bioinformatic analysis and dual-luciferase reporter assays.ResultsThe expression of miR-1-3p was reduced in HCC samples and cell lines. Overexpression of miR-1-3p suppressed the proliferation, migration, and invasion, and induced cell-cycle arrest and apoptosis of HCC cells, whereas the opposite effects were induced by miR-1-3p inhibition. ORC6 is identified as a novel target of miR-1-3p, the expression of which is negatively correlated with miR-1-3p expression in HCC tissues. ORC6 overexpression facilitated the proliferation, migration, invasion, and cell cycle progression, and reduced apoptosis of HCC cells, whereas the opposite effects were induced by ORC6 knockdown. What is more, ORC6 overexpression counteracted the biological functions of miR-1-3p in HCC cells.ConclusionMiR-1-3p targets ORC6 to suppress the proliferation, migration, invasion, and cell cycle progression, and promote apoptosis of HCC cells.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Xianyi Cheng ◽  
Dezhi Li ◽  
Tiangyang Qi ◽  
Jia Sun ◽  
Tao Zhou ◽  
...  

AbstractAlthough the overall survival of hepatocellular carcinoma (HCC) patients has been significantly improved, prognostic clinical evaluation remains a substantial problem owing to the heterogeneity and complexity of tumor. A reliable and accurate predictive biomarker may assist physicians in better monitoring of patient treatment outcomes and follow the overall survival of patients. Accumulating evidence has revealed that DTNBP1 plays functional roles in cancer prognosis. Therefore, the expression and function of DTNBP1in HCC was systematically investigated in our study. The expression and prognostic value of DTNBP1 were investigated using the data from Cancer Genome Atlas (TCGA) database, Gene Expression Omnibus (GEO) cohorts and clinical samples. A series of cellular function assays were performed to elucidate the effect of DTNBP1 on cellular proliferation, apoptosis and metastasis. Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment and Protein–protein interaction (PPI) network construction were performed to screen the genes with highest interaction scores with DTNBP1. Finally, the underlying mechanism was also analyzed using Gene Set Enrichment Analysis (GSEA) and confirmed using RT-qPCR and western blotting. DTNBP1 was upregulated in many types of cancers, especially in HCC. The DTNBP1 expression levels is associated with clinicopathologic variables and patient survival status. The differential expression of DTNBP1 could be used to determine the risk stratification of patients with HCC. DTNBP1 deficiency inhibited cell proliferation and metastasis, but promoted cell apoptosis. Mechanistically, DTNBP1 regulated the cell cycle progression through affecting the expression of cell cycle-related genes such as CDC25A, CCNE1, CDK2, CDC20, CDC25B, CCNB1, and CDK1. DTNBP1, which regulates the cell cycle progression, may be used as a prognostic marker for HCC.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2549-2549
Author(s):  
Leticia Fröhlich Archangelo ◽  
Fabíola Traina ◽  
Philipp A Greif ◽  
Alexandre Maucuer ◽  
Valérie Manceau ◽  
...  

Abstract Abstract 2549 The CATS protein (also known as FAM64A and RCS1) was first identified as a novel CALM (PICALM) interactor that interacts with and influences the subcellular localization of CALM/AF10, a leukemic fusion protein found in acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL) and in malignant lymphoma. CATS is highly expressed in leukemia, lymphoma and tumor cell lines but not in non-proliferating T-cells or in peripheral blood lymphocytes (PBLs). The protein levels of CATS are cell cycle-dependent, induced by mitogens (e.g. PHA) and correlate with the proliferative state of the cell. Thus, CATS is as a marker for proliferation. Using CATS as a bait in a yeast two-hybrid screen we identified the Kinase Interacting Stathmin (KIS or UHMK1) as a CATS interacting partner. KIS is a serine/threonine kinase that positively regulates cell cycle progression through phosphorylation of p27KIP in leukemia cell lines. The interaction between CATS and KIS was confirmed by GST pull-down, and co-immunopreciptation. KIS interaction region was mapped to CATS N-terminal portion. Searching through the phosphorylation site databases PhosphoSitePlus™ (http://www.phosphosite.org) and Phosida (http://www.phosida.com/) we identified 9 residues within CATS shown to be subject of post-translational modification. Phosphorylation assay with recombinant KIS demonstrated that this kinase efficiently phosphorylated full length CATS and its N-terminal part, but not the C-terminal of the protein. To map the KIS phosphorylation site of CATS, peptides comprising all known phospho-sites of CATS N-terminal (S16, S129, S131, T133 and S135) and mutations of the putative KIS target motif (S129 and S131) were tested for KIS phosphorylation. Thereby, we identified CATS S131 as the unique target site for KIS phosphorylation. Western blot analysis of U2OS cells, which had undergone cell cycle synchronization by a double thymidine block, revealed that KIS fluctuated throughout the cell cycle and counteracted CATS levels. Furthermore, we analyzed KIS protein expression on bone marrow mononuclear cells (MNCs) of MDS and AML patients. We studied 5 healthy donors, 13 MDS patients (7 low-risk [RA/RARS] and 6 high-risk [RAEB/RAEBt] according to FAB classification) and 10 AML patients (7 de novo and 3 secondary). Western blot analysis revealed elevated levels of KIS in MDS and AML compared to the control samples. We used a reporter gene assay in order to determine the influence of KIS on the CATS-mediated transcriptional repression and to elucidate the role of KIS-dependent phosphorylation of CATS at serine 131 in this context. Coexpression of GAL4-DBD-CATS and KIS enhanced the inhibitory function of CATS on transactivation of the GAL4-tk-luciferase reporter. This effect of KIS was observed for both CATS wild type and CATS phospho-defective mutant (CATS S131A) but not when the kinase dead mutant KISK54R was used. Moreover, CATS phosphomimetic clone (CATSS131D) exerted the same transcriptional activity as the CATS wild type. These results demonstrate that KIS enhances the transcriptional repressor activity of CATS, and this effect is independent of CATS phosphorylation at S131 but dependent on the kinase activity of KIS. Finally, we investigated whether CATS would affect the CALM/AF10 function as an aberrant transcription factor. Coexpression of constant amounts of GAL4-DBD-CALM/AF10 and increasing amounts of CATS lead to reduced transactivation capacity of CALM/AF10 in a dose dependent manner. Our results show that CATS not only interacts with but is also a substrate for KIS, suggesting that CATS function might be modulated through phosphorylation events. The identification of the CATS-KIS interaction further supports the hypothesis that CATS plays an important role in the control of cell proliferation. Moreover the elevated levels of KIS in hematological malignances suggest that KIS could regulate CATS activity and/or function in highly proliferating leukemic cells. Thus our results indicate that CATS function might be important to understand the malignant transformation mediated by CALM/AF10. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xia Li ◽  
Meiting Qu ◽  
Jie Zhang ◽  
Kuanyin Chen ◽  
Xianghui Ma

Abstract Background Previous study showed that circular RNA Absent-Small-Homeotic-2--Like protein (circASH2L) was higher in rheumatoid arthritis (RA) patients. However, the roles and mechanisms of circASH2L in RA progression remain unclear. Methods Levels analysis was conducted using western blot and qRT-PCR. The proliferation, apoptosis, cell cycle progression, migration, invasiveness, and inflammation of RA fibroblast-like synoviocytes (RA-FLSs) were determined via MTT, flow cytometry, western blot, transwell, and ELISA assays. Results CircASH2L knockdown in RA-FLSs suppressed cell proliferative, migratory, and invasive capacities, triggered cell cycle arrest, promoted apoptosis, and inhibited inflammation. Mechanistically, circASH2L targeted miR-129-5p, and repression of miR-129-5p abolished the functions of circASH2L silencing on the growth, motility, and inflammation of RA-FLSs. Besides, miR-129-5p was found to directly target HIPK2, and suppressed the tumor-like biologic behaviors and inflammation of RA-FLSs via regulating HIPK2. Importantly, we proved that circASH2L could modulate HIPK2 expression via miR-129-5p. Conclusion CircASH2L promoted RA-FLS growth, motility, and inflammation through miR-129-5p/HIPK2 axis.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chenyang Li ◽  
Yue Wang ◽  
Hao Wang ◽  
Bowen Wang ◽  
Yunxia Wang ◽  
...  

Objective. To explore the role and possible underlying mechanism of miR-486 in ovarian cancer (OC) cells. Methods. The expression of miR-486 and CADM1 was detected by qRT-PCR in OC tissues and adjacent nontumor tissues and OC cell lines. The dual-luciferase reporter gene system was used to determine the targeting relationship between miR-486 and CADM1. CCK-8, colony formation assay, Transwell, and flow cytometry were performed to detect cell proliferation, cell invasion, cell cycle progression, and the apoptotic cell death, respectively. Western blot was carried out to detect the expression of CADM1 protein and the proteins associated with cell cycle progression. Results. miR-486 was significantly upregulated in OC tissues and cells, while CADM1 expression was significantly downregulated. Dual-luciferase reporter assays further confirmed that CADM1 was a target gene of miR-486. Interference with miR-486 could inhibit the proliferation and invasion and promoted the apoptosis of SKOV3 cells. Knocking down both miR-486 and CADM1 significantly increased the SKOV3 cell proliferation, invasion, and the number of cells transitioning from the G0/G1 phase into the S phase of cell cycle and reduced the cellular apoptosis. Western blot analysis revealed that the expression of cell cycle progression-related proteins (CyclinD1, CyclinE, and CDK6) was significantly reduced, and the p21 expression was increased when interfering with both miR-486 and CADM1 expression. Conclusion. Our results suggested that miR-486 could act as a tumor promoter by targeting CADM1 and be a potential therapeutic target for the treatment of OC.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Chen-Hua Dong ◽  
Tao Jiang ◽  
Hang Yin ◽  
Hu Song ◽  
Yi Zhang ◽  
...  

AbstractColorectal cancer is the second common cause of death worldwide. Lamin B2 (LMNB2) is involved in chromatin remodeling and the rupture and reorganization of nuclear membrane during mitosis, which is necessary for eukaryotic cell proliferation. However, the role of LMNB2 in colorectal cancer (CRC) is poorly understood. This study explored the biological functions of LMNB2 in the progression of colorectal cancer and explored the possible molecular mechanisms. We found that LMNB2 was significantly upregulated in primary colorectal cancer tissues and cell lines, compared with paired non-cancerous tissues and normal colorectal epithelium. The high expression of LMNB2 in colorectal cancer tissues is significantly related to the clinicopathological characteristics of the patients and the shorter overall and disease-free cumulative survival. Functional analysis, including CCK8 cell proliferation test, EdU proliferation test, colony formation analysis, nude mouse xenograft, cell cycle, and apoptosis analysis showed that LMNB2 significantly promotes cell proliferation by promoting cell cycle progression in vivo and in vitro. In addition, gene set enrichment analysis, luciferase report analysis, and CHIP analysis showed that LMNB2 promotes cell proliferation by regulating the p21 promoter, whereas LMNB2 has no effect on cell apoptosis. In summary, these findings not only indicate that LMNB2 promotes the proliferation of colorectal cancer by regulating p21-mediated cell cycle progression, but also suggest the potential value of LMNB2 as a clinical prognostic marker and molecular therapy target.


Sign in / Sign up

Export Citation Format

Share Document