scholarly journals Co-expression and prognosis analyses of GLUT1–4 and RB1 in breast cancer

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaodan Zhang ◽  
Xiaocong Pang ◽  
Zhuo Zhang ◽  
Qianxin Liu ◽  
Hanxu Zhang ◽  
...  

Abstract Background Current treatment methods for patients with triple-negative breast cancer (TNBC) are very limited, and the prognosis of TNBC is relatively poor. It has been reported that glucose transporter 1 (GLUT1) is overexpressed in breast cancer cells; however, its association with the prognosis is mostly unclear. Moreover, retinoblastoma gene 1 (RB1) might be used as a biomarker for the sensitivity of breast cancer cells to GLUT1 inhibitors, which brought us to the hypothesis that there might be a close correlation between the expression of GLUT1–4 and the expression of RB1. Methods In this study, we systematically analyzed the co-expression of GLUT1–4 and the influence of GLUT1–4 gene expression on the prognosis of breast cancer using data mining methods. We also explored possible relationships between GLUT1–4 and RB1 expression in breast cancer tissues. We used public databases such as ONCOMINE, GEPIA, LinkedOmics, and COEXPEDIA. Results According to the results, the mRNA expression of SLC2A1 was significantly higher in breast cancer, while the expression levels of SLC2A2–4 were downregulated. The results also indicate that GLUT1 expression does not have significant influence on the overall survival of patients with breast cancer. The mRNA expression of SLC2A1 and RB1 is significantly correlated, which means that tissues with high RB1 mRNA expression might have relatively higher mRNA expression of SLC2A1; however, further study analyzing their roles in the expression regulation pathways with human samples is needed to verify the hypothesis. Conclusions The mRNA expression of SLC2A1 was significantly higher in breast cancer. The overall survival of breast cancer patients wasn’t significantly correlated with GLUT1–4 expression. The mRNA expression of SLC2A1 and RB1 is significantly correlated according to the analysis conducted in LinkedOmics. It provides reference for future possible individualized treatment of TNBC using GLUT1 inhibitors, especially in patients with higher mRNA expression of RB1. Further study analyzing the roles of these two genes in the regulation pathways is needed.

2014 ◽  
Vol 21 (1) ◽  
pp. 101-112 ◽  
Author(s):  
Anika Nagelkerke ◽  
Anieta M Sieuwerts ◽  
Johan Bussink ◽  
Fred C G J Sweep ◽  
Maxime P Look ◽  
...  

Lysosome-associated membrane protein 3 (LAMP3) is a member of the LAMP-family of proteins, which are involved in the process of autophagy. Autophagy is induced by tamoxifen in breast cancer cells and may contribute to tamoxifen resistance. In this study, the significance of LAMP3 for tamoxifen resistance in breast cancer was examined. The methods employed included use of clonogenic assays to assess the survival of MCF7 breast cancer cells with LAMP3 knockdown after tamoxifen treatment and of quantitative real-time PCR of LAMP3 to evaluate its predictive value for first-line tamoxifen treatment in patients with advanced breast cancer. Results show that tamoxifen treatment of MCF7 cells induced LAMP3 mRNA expression. LAMP3 knockdown in these cells increased tamoxifen sensitivity. Evaluation of expression of the autophagy markers, LC3B and p62, after LAMP3 knockdown showed increased expression levels, indicating that cells with LAMP3 knockdown have a suppressed ability to complete the autophagic process. In addition, knockdown of autophagy-associated genes resulted in sensitization to tamoxifen. Next, tamoxifen-resistant MCF7 cells were cultured. These cells had a sevenfold higher LAMP3 mRNA expression, showed elevated basal autophagy levels, and could be significantly resensitized to tamoxifen by LAMP3 knockdown. In patients treated with first-line tamoxifen for advanced disease (n=304), high LAMP3 mRNA expression was associated with shorter progression-free survival (P=0.003) and shorter post-relapse overall survival (P=0.040), also in multivariate analysis. Together, these results indicate that LAMP3 contributes to tamoxifen resistance in breast cancer. Tamoxifen-resistant cells are resensitized to tamoxifen by the knockdown of LAMP3. Therefore, LAMP3 may be clinically relevant to countering tamoxifen resistance in breast cancer patients.


2021 ◽  
pp. 1-10
Author(s):  
Yu Wang ◽  
Han Zhao ◽  
Ping Zhao ◽  
Xingang Wang

BACKGROUND: Pyruvate kinase M2 (PKM2) was overexpressed in many cancers, and high PKM2 expression was related with poor prognosis and chemoresistance. OBJECTIVE: We investigated the expression of PKM2 in breast cancer and analyzed the relation of PKM2 expression with chemotherapy resistance to the neoadjuvant chemotherapy (NAC). We also investigated whether PKM2 could reverse chemoresistance in breast cancer cells in vitro and in vivo. METHODS: Immunohistochemistry (IHC) was performed in 130 surgical resected breast cancer tissues. 78 core needle biopsies were collected from breast cancer patients before neoadjuvant chemotherapy. The relation of PKM2 expression and multi-drug resistance to NAC was compared. The effect of PKM2 silencing or overexpression on Doxorubicin (DOX) sensitivity in the MCF-7 cells in vitro and in vivo was compared. RESULTS: PKM2 was intensively expressed in breast cancer tissues compared to adjacent normal tissues. In addition, high expression of PKM2 was associated with poor prognosis in breast cancer patients. The NAC patients with high PKM2 expression had short survival. PKM2 was an independent prognostic predictor for surgical resected breast cancer and NAC patients. High PKM2 expression was correlated with neoadjuvant treatment resistance. High PKM2 expression significantly distinguished chemoresistant patients from chemosensitive patients. In vitro and in vivo knockdown of PKM2 expression decreases the resistance to DOX in breast cancer cells in vitro and tumors in vivo. CONCLUSION: PKM2 expression was associated with chemoresistance of breast cancers, and could be used to predict the chemosensitivity. Furthermore, targeting PKM2 could reverse chemoresistance, which provides an effective treatment methods for patients with breast cancer.


2021 ◽  
pp. 096032712110214
Author(s):  
Yansong Chen ◽  
Ye Tian ◽  
Gongsheng Jin ◽  
Zhen Cui ◽  
Wei Guo ◽  
...  

This study aimed to investigate the anti-cancer effect of lobetyolin on breast cancer cells. Lobetyolin was incubated with MDA-MB-231 and MDA-MB-468 breast cancer cells for 24 h. Glucose uptake and the mRNA expression of GLUT4 ( SLC2A4), HK2 and PKM2 were detected to assess the effect of lobetyolin on glucose metabolism. Glutamine uptake and the mRNA expression of ASCT2 ( SLC1A5), GLS1, GDH and GLUL were measured to assess the effect of lobetyolin on glutamine metabolism. Annexin V/PI double staining and Hoechst 33342 staining were used to investigate the effect of lobetyolin on cell apoptosis. Immunoblot was employed to estimate the effect of lobetyolin on the expression of proliferation-related markers and apoptosis-related markers. SLC1A5 knockdown with specific siRNA was performed to study the role of ASCT2 played in the anti-cancer effect of lobetyolin on MDA-MB-231 and MDA-MB-468 breast cancer cells. C-MYC knockdown with specific siRNA was performed to study the role of c-Myc played in lobetyolin-induced ASCT2 down-regulation. Myr-AKT overexpression was performed to investigate the role of AKT/GSK3β signaling played in lobetyolin-induced down-regulation of c-Myc and ASCT2. The results showed that lobetyolin inhibited the proliferation of both MDA-MB-231 and MDA-MB-468 breast cancer cells. Lobetyolin disrupted glutamine uptake via down-regulating ASCT2. SLC1A5 knockdown attenuated the anti-cancer effect of lobetyolin. C-MYC knockdown attenuated lobetyolin-caused down-regulation of ASCT2 and Myr-AKT overexpression reversed lobetyolin-caused down-regulation of both c-Myc and ASCT2. In conclusion, the present work suggested that lobetyolin exerted anti-cancer effect via ASCT2 down-regulation-induced apoptosis in breast cancer cells.


2012 ◽  
Vol 11 (11) ◽  
pp. 1457-1467 ◽  
Author(s):  
Olesya Chornoguz ◽  
Alexei Gapeev ◽  
Michael C. O'Neill ◽  
Suzanne Ostrand-Rosenberg

The major histocompatibility complex (MHC) class II-associated Invariant chain (Ii) is present in professional antigen presenting cells where it regulates peptide loading onto MHC class II molecules and the peptidome presented to CD4+ T lymphocytes. Because Ii prevents peptide loading in neutral subcellular compartments, we reasoned that Ii− cells may present peptides not presented by Ii+ cells. Based on the hypothesis that patients are tolerant to MHC II-restricted tumor peptides presented by Ii+ cells, but will not be tolerant to novel peptides presented by Ii− cells, we generated MHC II vaccines to activate cancer patients' T cells. The vaccines are Ii− tumor cells expressing syngeneic HLA-DR and the costimulatory molecule CD80. We used liquid chromatography coupled with mass spectrometry to sequence MHC II-restricted peptides from Ii+ and Ii− MCF10 human breast cancer cells transfected with HLA-DR7 or the MHC Class II transactivator CIITA to determine if Ii− cells present novel peptides. Ii expression was induced in the HLA-DR7 transfectants by transfection of Ii, and inhibited in the CIITA transfectants by RNA interference. Peptides were analyzed and binding affinity predicted by artificial neural net analysis. HLA-DR7-restricted peptides from Ii− and Ii+ cells do not differ in size or in subcellular location of their source proteins; however, a subset of HLA-DR7-restricted peptides of Ii− cells are not presented by Ii+ cells, and are derived from source proteins not used by Ii+ cells. Peptides from Ii− cells with the highest predicted HLA-DR7 binding affinity were synthesized, and activated tumor-specific HLA-DR7+ human T cells from healthy donors and breast cancer patients, demonstrating that the MS-identified peptides are bonafide tumor antigens. These results demonstrate that Ii regulates the repertoire of tumor peptides presented by MHC class II+ breast cancer cells and identify novel immunogenic MHC II-restricted peptides that are potential therapeutic reagents for cancer patients.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Yifan Wang ◽  
Ruocen Liao ◽  
Xingyu Chen ◽  
Xuhua Ying ◽  
Guanping Chen ◽  
...  

Abstract Breast cancer is considered to be the most prevalent cancer in women worldwide, and metastasis is the primary cause of death. Protease-activated receptor 1 (PAR1) is a GPCR family member involved in the invasive and metastatic processes of cancer cells. However, the functions and underlying mechanisms of PAR1 in breast cancer remain unclear. In this study, we found that PAR1 is highly expressed in high invasive breast cancer cells, and predicts poor prognosis in ER-negative and high-grade breast cancer patients. Mechanistically, Twist transcriptionally induces PAR1 expression, leading to inhibition of Hippo pathway and activation of YAP/TAZ; Inhibition of PAR1 suppresses YAP/TAZ-induced epithelial-mesenchymal transition (EMT), invasion, migration, cancer stem cell (CSC)-like properties, tumor growth and metastasis of breast cancer cells in vitro and in vivo. These findings suggest that PAR1 acts as a direct transcriptionally target of Twist, can promote EMT, tumorigenicity and metastasis by controlling the Hippo pathway; this may lead to a potential therapeutic target for treating invasive breast cancer.


2020 ◽  
Author(s):  
Mengyu Wei ◽  
Jun Hao ◽  
Xiaomei Liao ◽  
Yinfeng Liu ◽  
Ruihuan Fu ◽  
...  

Abstract Background Mitofusin 2 (MFN2) is localized on the outer membrane of mitochondria and is closely related to the migration of malignant tumor cells. Estrogen receptor β (ERβ) plays an anticancer role in breast cancer. Our previous experiments showed that ERβ can induce MFN2 expression, which then inhibits breast cancer cell migration. However, the exact mechanism by which ERβ-induced MFN2 inhibits breast cancer cell migration is unknown. Methods In this study, immunohistochemistry was first used to detect the expression of MFN2 in breast cancer tissues, and its relationship with the clinicopathological characteristics and prognosis of breast cancer patients was analyzed. MCF-7 and MDA-MB-231 cells were transfected with ERβ and MFN2 knockdown or expression plasmids. Western blot was used to detect the effects of ERβ on MFN2 and MFN2 on P-AKT473 and MMP2; the P-AKT pathway inhibitor LY294002 was administered to cells transfected with MFN2 knockdown plasmids, Western blot, immunocytofluorescence, and a wound healing assay revealed the effect of MFN2 on its downstream signaling pathway and the migration of breast cancer cells. Results This study found that the expression of MFN2 is related to the molecular type and prognosis of breast cancer patients ( P <0.05). The positive expression rate of MFN2 in triple-negative breast cancer was significantly lower than that in the HER2 + and luminal types. However, MFN2 expression was unrelated to age, tumor size, lymph node metastasis, TNM stage, histological type and grade ( P >0.05); ERβ positively regulated MFN2 expression and reduced the migration of both MCF-7 and MDA-MB-231 cells, while MFN2 knockdown increased the expression of P-AKT473 and MMP2. In contrast, the overexpression of MFN2 inhibited the expression of P-AKT473 and MMP2. These results showed that in MFN2 knockdown cells treated with LY294002, P-AKT473 and MMP2 expression levels were reversed. The reversal of P-AKT473 and MMP2 expression levels inhibits the invasiveness of human breast cancer cells. Conclusion MFN2 is related to the molecular subtype and prognosis of breast cancer. In human breast cancer MCF-7 and MDA-MB-231 cells, ERβ-induced MFN2 can inhibit the P-AKT pathway, which inhibits the invasiveness and migration of both breast cancer cell lines.


2021 ◽  
Author(s):  
Duo You ◽  
Danfeng Du ◽  
Xueke Zhao ◽  
Xinmin Li ◽  
Minfeng Ying ◽  
...  

Abstract Background: α-ketoglutarate (α-KG) is the substrate to hydoxylate collagen and hypoxia-inducible factor-1α (HIF-1α), which are important for cancer metastasis. Previous studies showed that upregulation of collagen prolyl 4-hydroxylase in breast cancer cells stabilizes HIF-1α via depleting α-KG in breast cancer cells. We propose that mitochondrial malate enzyme 2 (ME2) may also affect HIF-1α via modulating α-KG level in breast cancer cells. Methods: ME2 protein expression was evaluated by immunohistochemistry on 100 breast cancer patients and correlated with clinicopathological indicators. The effect of ME2 knockout on cancer metastasis was evaluated by an orthotopic breast cancer model. The effect of ME2 knockout or knockdown on the levels of α-KG and HIF-1α protein in breast cancer cell lines (4T1 and MDA-MB-231) was determined in vitro and in vivo.Results: The high expression of ME2 was observed in the human breast cancerous tissues compared to the matched precancerous tissues (P=0.000). The breast cancer patients with a high expression of ME2 had an inferior survival than the patients with low expression of ME2 (P=0.019). ME2 high expression in breast cancer tissues was also related with lymph node metastasis (P=0.016), pathological staging (P=0.033) and vascular cancer embolus (P=0.014). In a 4T1 orthotopic breast cancer model, ME2 knockout significantly inhibited lung metastasis. In the tumors formed by ME2 knockout 4T1 cells, α-KG level significantly increased, collagen hydroxylation level did not change significantly, but HIF-1α protein level significantly decreased, in comparison to control. In cell culture, ME2 knockout or knockdown cells demonstrated a significantly higher α-KG level but significantly lower HIF-1α protein level than control cells under hypoxia. Exogenous malate and α-KG exerted similar effect on HIF-1α in breast cancer cells to ME2 knockout or knockdown. Treatment with malate significantly decreased 4T1 breast cancer lung metastasis. ME2 expression was associated with HIF-1α level in human breast cancer samples (P=0.027).Conclusion: We provide evidence that upregulation of ME2 is associated with a poor prognosis of breast cancer patients and propose a mechanistic understanding of a link between ME2 and breast cancer metastasis.


2021 ◽  
Vol 22 (20) ◽  
pp. 11273
Author(s):  
Natalia Magdalena Lisiak ◽  
Izabela Lewicka ◽  
Mariusz Kaczmarek ◽  
Jacek Kujawski ◽  
Barbara Bednarczyk-Cwynar ◽  
...  

Approximately 20–30% of the diagnosed breast cancers overexpress the human epidermal growth factor receptor 2 (HER2). This type of cancer is associated with a more aggressive phenotype; thus, there is a need for the discovery of new compounds that would improve the survival in HER2-positive breast cancer patients. It seems that one of the most promising therapeutic cancer strategies could be based on the biological activity of pentacyclic triterpenes’ derivatives and the best-known representative of this group, oleanolic acid (OA). The biological activity of oleanolic acid and its two semisynthetic derivatives, methyl 3-hydroxyimino-11-oxoolean-12-en-28-oate (HIMOXOL) and 12α-bromo-3-hydroxyimonoolean-28→13-olide (Br-HIMOLID), was assessed in SK-BR-3 breast cancer cells (HER2-positive). Viability tests, cell cycle assessment, evaluation of apoptosis, autophagy, and adhesion/migration processes were performed using MTT, clonogenic, cytofluorometry, Western blot, and qPCR. Both derivatives revealed higher cytotoxicity in studied breast cancer cells than the maternal compound, OA. They also decreased cell viability, induced autophagy, and (when applied in sub-cytotoxic concentrations) decreased the migration of SK-BR-3 cells.This study is the first to report the cytostatic, proautophagic (mTOR/LC3/SQSTM/BECN1 pathway), and anti-migratory (integrin β1/FAK/paxillin pathway) activities of HIMOXOL and Br-HIMOLID in HER2-positive breast cancer cells.


Sign in / Sign up

Export Citation Format

Share Document