scholarly journals miR-17-5p drives G2/M-phase accumulation by directly targeting CCNG2 and is related to recurrence of head and neck squamous cell carcinoma

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qiang Huang ◽  
Yu-Jie Shen ◽  
Chi-Yao Hsueh ◽  
Yang Guo ◽  
Yi-Fan Zhang ◽  
...  

Abstract Background The human miR-17-92 polycistron is the first reported and most well-studied onco-miRNA with a cluster of seven miRNAs. miR-17-5p, a member of the miR-17-92 family, plays an important role in tumor cell proliferation, apoptosis, migration and invasion. However, few studies have shown the role of miR-17-5p in the cell cycle of head and neck squamous cell carcinoma (HNSCC). Methods RT-qPCR was used to detect miR-17-5p expression levels in 64 HNSCC tissues and 5 cell lines. The relationship between the expression of miR-17-5p in the tissues and the clinical characteristics of the patients was analyzed. HNSCC cells were transfected with an miR-17-5p mimic or inhibitor to evaluate cell cycle distribution by flow cytometry. Cell cycle distribution of cells transfected with target gene was evaluated using flow cytometry. Dual-luciferase reporter assay was used to detect the regulatory effect of miR-17-5p on target gene expression. Results In the present study, we found that miR-17-5p expression in HNSCC tissues and cell lines was remarkably increased, and miR-17-5p is related to recurrence in HNSCC patients. Silencing miR-17-5p blocked HNSCC cells in G2/M phase, whereas its overexpression propelled cell cycle progression. More importantly, we verified that miR-17-5p negatively regulated CCNG2 mRNA and protein expression by directly targeting its 3’UTR. Conclusion These findings suggest that miR-17-5p might act as a tumor promoter and prognostic factor for recurrence in HNSCC patients.

2018 ◽  
Vol 19 (9) ◽  
pp. 2485 ◽  
Author(s):  
Stephanie Hehlgans ◽  
Patrick Booms ◽  
Ömer Güllülü ◽  
Robert Sader ◽  
Claus Rödel ◽  
...  

Vismodegib, an inhibitor of the Hedgehog signaling pathway, is an approved drug for monotherapy in locally advanced or metastatic basal cell carcinoma (BCC). Data on combined modality treatment by vismodegib and radiation therapy, however, are rare. In the present study, we examined the radiation sensitizing effects of vismodegib by analyzing viability, cell cycle distribution, cell death, DNA damage repair and clonogenic survival in three-dimensional cultures of a BCC and a head and neck squamous cell carcinoma (HNSCC) cell line. We found that vismodegib decreases expression of the Hedgehog target genes glioma-associated oncogene homologue (GLI1) and the inhibitor of apoptosis protein (IAP) Survivin in a cell line- and irradiation-dependent manner, most pronounced in squamous cell carcinoma (SCC) cells. Furthermore, vismodegib significantly reduced proliferation in both cell lines, while additional irradiation only slightly further impacted on viability. Analyses of cell cycle distribution and cell death induction indicated a G1 arrest in BCC and a G2 arrest in HNSCC cells and an increased fraction of cells in SubG1 phase following combined treatment. Moreover, a significant rise in the number of phosphorylated histone-2AX/p53-binding protein 1 (γH2AX/53BP1) foci in vismodegib- and radiation-treated cells was associated with a significant radiosensitization of both cell lines. In summary, these findings indicate that inhibition of the Hedgehog signaling pathway may increase cellular radiation response in BCC and HNSCC cells.


Author(s):  
Bernhard J. Jank ◽  
Teresa Lenz ◽  
Markus Haas ◽  
Lorenz Kadletz-Wanke ◽  
Nicholas J. Campion ◽  
...  

SummaryBackground. Resistance to radiation therapy poses a major clinical problem for patients suffering from head and neck squamous cell carcinoma (HNSCC). Transforming growth factor ß (TGF-ß) has emerged as a potential target. This study aimed to investigate the radiosensitizing effect of galunisertib, a small molecule TGF-ß receptor kinase I inhibitor, on HNSCC cells in vitro. Methods. Three HNSCC cell lines were treated with galunisertib alone, or in combination with radiation. Of those three cell lines, one has a known inactivating mutation of the TGF-ß pathway (Cal27), one has a TGF-ß pathway deficiency (FaDu) and one has no known alteration (SCC-25). The effect on metabolic activity was evaluated by a resazurin-based reduction assay. Cell migration was evaluated by wound-healing assay, clonogenic survival by colony formation assay and cell cycle by FACS analysis. Results. Galunisertib reduced metabolic activity in FaDu, increased in SCC-25 and had no effect on CAL27. Migration was significantly reduced by galunisertib in all three cell lines and showed additive effects in combination with radiation in CAL27 and SCC-25. Colony-forming capabilities were reduced in SCC-25 by galunisertib and also showed an additive effect with adjuvant radiation treatment. Cell cycle analysis showed a reduction of cells in G1 phase in response to galunisertib treatment. Conclusion. Our results indicate a potential antineoplastic effect of galunisertib in HNSCC with intact TGF-ß signaling in combination with radiation.


2021 ◽  
Author(s):  
Xiaobin Song ◽  
Longjie Li ◽  
Liang Shi ◽  
Xinyu Liu ◽  
Xun Qu ◽  
...  

Abstract BackgroundC1QTNF6 (CTRP6), a member of the CTRP family, has been recently implied to play a role in tumorigenesis. However, the expression status and the role of C1QTNF6 in oral squamous cell carcinoma (OSCC) remains unclear. MethodsImmunohistochemistry of OSCC tissue and data from TCGA both implied that C1QTNF6 was closely related to OSCC. We constructed lentivirus to knockdown C1QTNF6 in CAL27 cells and SCC-9 cells. Then the change of C1QTNF6 mRNA expression was detected with qRT-PCR, and the Western blot analysis was performed to detect changes in protein expression. Furthermore, Cell Cycle Analysis and Cell apoptosis analysis was measured. 4-week-old female BALB/c nude mice were purchased to observe the In vivo tumorigenicity. Finally, Pathway Analysis was performed.ResultsIn this study, we found that C1QTNF6 was overexpressed in OSCC tissues and cell lines, and the cellular proliferation was significantly decreased in C1QTNF6 knockdown OSCC cells. Knockdown of C1QTNF6 resulted in cell cycle arrest at the G2/M phase and enhanced apoptosis in OSCC cell lines. Further assays showed that C1QTNF6 silencing inhibits tumor growth of OSCC in vivo. Moreover, microarray analysis revealed that C1QTNF6 silencing results in significant alteration of many genes. Ingenuity Pathway Analysis (IPA) revealed that the Acute Phase Response signaling pathway was significantly activated following C1QTNF6 silencing. ConclusionsThese results suggested that C1QTNF6 play a promoting role in OSCC tumorigenesis, which may be a promising therapeutic target for OSCC treatment.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 263-278
Author(s):  
Graziela de Moura Aguiar ◽  
Anelisa Ramão ◽  
Jessica Rodrigues Plaça ◽  
Sarah Capelupe Simões ◽  
Natália Volgarine Scaraboto ◽  
...  

BACKGROUND: Expression dysregulation of HOX homeobox genes has been observed in several cancers, including head and neck squamous cell carcinoma (HNSC). Although characterization of HOX gene roles in HNSC development has been reported, there is still a need to better understand their real contribution to tumorigenesis. OBJECTIVE: The present study aimed to evaluate the contribution of the protein-coding HOX genes (HOXA10, HOXC9, HOXC10, and HOXC13) in cellular processes related to carcinogenesis and progression of the HNSC. METHODS: Expression of HOX genes was analyzed in HNSC RNA-Seq data from The Cancer Genome Atlas (TCGA) and by RT-qPCR in different tumor cell lines. siRNA-mediated knockdown of HOXA10, HOXC9, HOXC10 or HOXC13 was performed in HNSC cell lines, and predicted transcriptional targets HOX genes was analyzed by bioinformatic. RESULTS: Thirty-one out of the 39 mammalian HOX genes were found upregulated in HNSC tissues and cell lines. The HOXC9, HOXC10 or HOXC13 knockdown attenuated cell migration, and lead to downregulation of epithelial-mesenchymal transition (EMT) markers, which were predicted as transcriptional targets of these three HOX genes. Diminished colony formation and cell cycle arrest after HOXC10 or HOXC13 knockdown were also observed, corroborating the fact that there was an enrichment for genes in proliferation/cell cycle pathways. CONCLUSIONS: In summary, we revealed roles for HOXC9, HOXC10, and HOXC13 in cell migration and proliferation/cell cycle progression in HNSC cells and suggested that those HOX members contribute to HNSC development possibly by regulating tumor growth and metastasis.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3038
Author(s):  
Mickaël Burgy ◽  
Aude Jehl ◽  
Ombline Conrad ◽  
Sophie Foppolo ◽  
Véronique Bruban ◽  
...  

The EGFR-targeting antibody cetuximab (CTX) combined with radiotherapy is the only targeted therapy that has been proven effective for the treatment of locally advanced head and neck squamous cell carcinoma (LA-HNSCC). Recurrence arises in 50% of patients with HNSCC in the years following treatment. In clinicopathological practice, it is difficult to assign patients to classes of risk because no reliable biomarkers are available to predict the outcome of HPV-unrelated HNSCC. In the present study, we investigated the role of Caveolin-1 (Cav1) in the sensitivity of HNSCC cell lines to CTX-radiotherapy that might predict HNSCC relapse. Ctrl- and Cav-1-overexpressing HNSCC cell lines were exposed to solvent, CTX, or irradiation, or exposed to CTX before irradiation. Growth, clonogenicity, cell cycle progression, apoptosis, metabolism and signaling pathways were analyzed. Cav1 expression was analyzed in 173 tumor samples and correlated to locoregional recurrence and overall survival. We showed that Cav1-overexpressing cells demonstrate better survival capacities and remain proliferative and motile when exposed to CTX-radiotherapy. Resistance is mediated by the Cav1/EREG/YAP axis. Patients whose tumors overexpressed Cav1 experienced regional recurrence a few years after adjuvant radiotherapy ± chemotherapy. Together, our observations suggest that a high expression of Cav1 might be predictive of locoregional relapse of LA-HNSCC.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3714
Author(s):  
Christine Goudsmit ◽  
Felipe da Veiga Leprevost ◽  
Venkatesha Basrur ◽  
Lila Peters ◽  
Alexey Nesvizhskii ◽  
...  

To identify potential extracellular vesicle (EV) biomarkers in head and neck squamous cell carcinoma (HNSCC), we evaluated EV protein cargo and whole cell lysates (WCL) from HPV-positive and -negative HNSCC cell lines, as well as normal oral keratinocytes and HPV16-transformed cells. EVs were isolated from serum-depleted, conditioned cell culture media by polyethylene glycol (PEG) precipitation/ultracentrifugation. EV and WCL preparations were analyzed by LC-MS/MS. Candidate proteins detected at significantly higher levels in EV compared with WCL, or compared with EV from normal oral keratinocytes, were identified and confirmed by Wes Simple Western protein analysis. Our findings suggest that these proteins may be potential HNSCC EV markers as proteins that may be (1) selectively included in EV cargo for export from the cell as a strategy for metastasis, tumor cell survival, or modification of tumor microenvironment, or (2) representative of originating cell composition, which may be developed for diagnostic or prognostic use in clinical liquid biopsy applications. This work demonstrates that our method can be used to reliably detect EV proteins from HNSCC, normal keratinocyte, and transformed cell lines. Furthermore, this work has identified HNSCC EV protein candidates for continued evaluation, specifically tenascin-C, HLA-A, E-cadherin, EGFR, EPHA2, and cytokeratin 19.


2020 ◽  
Author(s):  
Mabel Catalán ◽  
Catalina Rodríguez ◽  
Ivonne Olmedo ◽  
Javiera Carrasco-Rojas ◽  
Diego Rojas ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1281 ◽  
Author(s):  
Kacper Guglas ◽  
Tomasz Kolenda ◽  
Maciej Stasiak ◽  
Magda Kopczyńska ◽  
Anna Teresiak ◽  
...  

YRNAs are a class of non-coding RNAs that are components of the Ro60 ribonucleoprotein particle and are essential for initiation of DNA replication. Ro60 ribonucleoprotein particle is a target of autoimmune antibodies in patients suffering from systemic lupus erythematosus and Sjögren’s syndrome. Deregulation of YRNAs has been confirmed in many cancer types, but not in head and neck squamous cell carcinoma (HNSCC). The main aim of this study was to determine the biological role of YRNAs in HNSCC, the expression of YRNAs, and their usefulness as potential HNSCC biomarkers. Using quantitative reverse transcriptase (qRT)-PCR, the expression of YRNAs was measured in HNSCC cell lines, 20 matched cancer tissues, and 70 FFPETs (Formaline-Fixed Paraffin-Embedded Tissue) from HNSCC patients. Using TCGA (The Cancer Genome Atlas) data, an analysis of the expression levels of selected genes, and clinical-pathological parameters was performed. The expression of low and high YRNA1 expressed groups were analysed using gene set enrichment analysis (GSEA). YRNA1 and YRNA5 are significantly downregulated in HNSCC cell lines. YRNA1 was found to be significantly downregulated in patients’ tumour sample. YRNAs were significantly upregulated in T4 stage. YRNA1 showed the highest sensitivity, allowing to distinguish healthy from cancer tissue. An analysis of TCGA data revealed that expression of YRNA1 was significantly altered in the human papilloma virus (HPV) infection status. Patients with medium or high expression of YRNA1 showed better survival outcomes. It was noted that genes correlated with YRNA1 were associated with various processes occurring during cancerogenesis. The GSEA analysis showed high expression enrichment in eight vital processes for cancer development. YRNA1 influence patients’ survival and could be used as an HNSCC biomarker. YRNA1 seems to be a good potential biomarker for HNSCC, however, more studies must be performed and these observations should be verified using an in vitro model.


Sign in / Sign up

Export Citation Format

Share Document