scholarly journals GLP2-GLP2R signal affects the viability and EGFR-TKIs sensitivity of PC9 and HCC827 cells

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Bin Song ◽  
Hong Ge ◽  
Chenwei Pu ◽  
Ning Li

Abstract Background The resistance to epidermal growth factor receptor (EGFR)- tyrosine kinase inhibitors (TKIs) therapy is currently the major clinical challenge in the treatment of lung cancer. This study aims to reveal the role of glucagon-like peptide (GLP) 2 and GLP-2 receptor (GLP2R) signaling on the EGFR-TKIs and cisplatin resistance of lung cancer cells. Methods The common differentially expressed genes in PC9 and HCC827 cells that were individually resistant to one of the three EGFR-TKIs (dacomitinib, osimertinib and afatinib) were screened. The data were from GSE168043 and GSE163913. The expression of GLP2R in drug-resistant cells was detected by western blot. The effect of GLP2R expression down- or up-regulation on resistance to dacomitinib, osimertinib, afatinib or cisplatin was measured by CCK-8 and flow cytometry assays. The long-acting analog of GLP-2, teduglutide, treated the parental cells. Results A total of 143 common differentially expressed genes were identified. Compared with the parent cells, the GLP2R expression in drug-resistant cell lines was significantly up-regulated. The exogenous expression of GLP2R in parental cells enhanced cell viability, while knockdown of GLP2R levels in drug-resistant cell lines inhibited cell viability. In addition, teduglutide treatment also enhanced the viability of lung cancer cells. Conclusion GLP2-GLP2R signal may change the sensitivity of cells to EGFR-TKIs and cisplatin. The development of GLP-2 or GLP2R inhibitors may be beneficial to the clinical treatment of lung cancer.

Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3790
Author(s):  
Gro Elise Rødland ◽  
Sissel Hauge ◽  
Grete Hasvold ◽  
Lilli T. E. Bay ◽  
Tine T. H. Raabe ◽  
...  

Inhibitors of WEE1 and ATR kinases are considered promising for cancer treatment, either as monotherapy or in combination with chemo- or radiotherapy. Here, we addressed whether simultaneous inhibition of WEE1 and ATR might be advantageous. Effects of the WEE1 inhibitor MK1775 and ATR inhibitor VE822 were investigated in U2OS osteosarcoma cells and in four lung cancer cell lines, H460, A549, H1975, and SW900, with different sensitivities to the WEE1 inhibitor. Despite the differences in cytotoxic effects, the WEE1 inhibitor reduced the inhibitory phosphorylation of CDK, leading to increased CDK activity accompanied by ATR activation in all cell lines. However, combining ATR inhibition with WEE1 inhibition could not fully compensate for cell resistance to the WEE1 inhibitor and reduced cell viability to a variable extent. The decreased cell viability upon the combined treatment correlated with a synergistic induction of DNA damage in S-phase in U2OS cells but not in the lung cancer cells. Moreover, less synergy was found between ATR and WEE1 inhibitors upon co-treatment with radiation, suggesting that single inhibitors may be preferable together with radiotherapy. Altogether, our results support that combining WEE1 and ATR inhibitors may be beneficial for cancer treatment in some cases, but also highlight that the effects vary between cancer cell lines.


Oncotarget ◽  
2017 ◽  
Vol 8 (43) ◽  
pp. 74466-74478 ◽  
Author(s):  
Andrzej Klejewski ◽  
Karolina Sterzyńska ◽  
Karolina Wojtowicz ◽  
Monika Świerczewska ◽  
Małgorzata Partyka ◽  
...  

2018 ◽  
Vol 29 (4) ◽  
pp. S190
Author(s):  
L. Vroomen ◽  
W. Vista ◽  
M. Fuijmori ◽  
J. Humm ◽  
S. Solomon ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1818-1818 ◽  
Author(s):  
Joel G Turner ◽  
Jana L Dawson ◽  
Christopher L Cubitt ◽  
Erkan Baluglo ◽  
Steven Grant ◽  
...  

Abstract Purpose Human multiple myeloma (MM) remains an incurable disease despite relatively effective treatments, including proteasome inhibitors, immunomodulator-based therapies, and high-dose chemotherapy with autologous stem cell rescue. New agents are needed to further improve treatment outcomes. In previous studies, we have shown that inhibitors of the nuclear export receptor XPO1, in combination with bortezomib, carfilzomib, doxorubicin, or melphalan, synergistically induced apoptosis in MM cells in vitro, in vivo and ex vivo without affecting non-myeloma cells. In early clinical trials, the oral, brain penetrating XPO1 inhibitor selinexor showed clear anti-myeloma activity however adverse events have been recorded, including nausea and anorexia. Our purpose was to investigate the use of oral KPT-8602, a novel small-molecule inhibitor of XPO1 with minimal brain penetration, which has been shown to have reduced toxicities in rodents and primates while maintaining potent anti-tumor effects. Experimental Procedures To test the efficacy of KPT-8602, we treated human MM cell lines (both parental and drug-resistant) with KPT-8602 ± currently used MM drugs, including bortezomib, carfilzomib, dexamethasone, doxorubicin, lenalidomide, melphalan, topotecan, and VP-16. Human MM cell lines assayed included RPMI-8226 (8226), NCI-H929 (H929), U266, and MM1.S, PI-resistant 8226-B25 and U266-PSR, doxorubicin-resistant 8226-Dox6 and 8226-Dox40, and melphalan-resistant 8226-LR5 and U266-LR6 cell lines. MM cells (2-4x106 cells/mL) were treated for 24 hours with KPT-8602 (300 nM), followed by treatment with one of the listed anti-MM agents for an additional 24 hours. MM cells were then assayed for cell viability (CellTiter-Blue, Promega). In addition, cells were treated with KPT-8602 ± anti-MM agents concurrently for 20 hours and assayed for apoptosis by flow cytometry. In vivo testing was done in NOD/SCID-g mice by intradermal injection of U266 MM cells. Treatment started 2 weeks after tumor challenge with KPT-8602 (10 mg/kg) ± melphalan (1 or 3 mg/kg) 2X/week (Tuesday, Friday) or with KPT-8602 alone 5X weekly (10 mg/kg) (Monday-Friday). A parallel experiment was run using the clinical XPO1 inhibitor KPT-330 (selinexor). Ex vivo testing was performed on MM cells from newly diagnosed/relapsed patient bone marrow aspirates with KPT-8602 ± bortezomib, carfilzomib, dexamethasone, doxorubicin, lenalidomide, melphalan, topotecan, or VP16. CD138+/light-chain+ cells were assayed for apoptosis by flow cytometry. Results Viability assay showed that KPT-8602 had low IC50values (~140 nM) as a single agent and functioned synergistically with bortezomib, carfilzomib, doxorubicin, melphalan, topotecan, and VP16. (CI values < 1.0). This synergistic effect was less pronounced in myeloma cells when KPT-8602 was used in combination with dexamethasone or lenalidomide. KPT-8602 ± bortezomib, carfilzomib, doxorubicin, melphalan, topotecan, and VP16 combination therapy also induced apoptosis in all MM cell lines tested, including drug-resistant cell lines, as shown by caspase 3 cleavage and flow cytometric analyses. NOD/SCID-gamma mouse tumor growth was reduced and survival increased in KPT-8602/melphalan-treated mice when compared to single-agent controls. In addition, mice treated with KPT-8602 5X weekly had significantly reduced tumor growth and increased survival when compared to 2X weekly drug administration. No toxicity was observed in KPT-8602-treated mice as determined by weight loss in both the 2X and 5X groups. In patient bone marrow biopsies, the combination of KPT-8602 ± bortezomib, carfilzomib, doxorubicin, melphalan, topotecan, and VP16 was more effective than single agents at inducing apoptosis in CD138+/LC+ MM cells in both newly diagnosed and relapsed/refractory patient samples. Conclusions We found that the novel XPO1 inhibitor KPT-8602 sensitizes MM cells to bortezomib, carfilzomib, doxorubicin, melphalan, topotecan, and VP16 as shown by apoptosis in parental and drug-resistant cell lines and by cell viability assays. Sensitization was found to be synergistic. In addition, KPT-8602 was effective in treatment of human MM tumors in mice as a single agent or in combination with melphalan and was effective when combined with several MM drugs in MM cell lines and MM patient bone marrow aspirates. KPT-8602 may be a potential candidate for future clinical trials. Disclosures Shacham: Karyopharm: Employment, Equity Ownership. Senapedis:Karyopharm Therapeutics, Inc.: Employment, Patents & Royalties.


2006 ◽  
Vol 312 (20) ◽  
pp. 4070-4078 ◽  
Author(s):  
Michela Solazzo ◽  
Ornella Fantappiè ◽  
Nadia Lasagna ◽  
Chiara Sassoli ◽  
Daniele Nosi ◽  
...  

2017 ◽  
Vol 43 (2) ◽  
pp. 757-767 ◽  
Author(s):  
Xiaoxue Bai ◽  
Lin Meng ◽  
Huijie Sun ◽  
Zhuo Li ◽  
Xiufang Zhang ◽  
...  

Background/Aims: Lung cancer is one of the most common causes of cancer related deaths worldwide. The role of several microRNAs (miRNAs) including miR-196b in different cancers has already been established. The study was aimed to explore the role of miR-196b in lung cancer and its possible underlying mechanism. Methods: Human lung cancer cell line A549 was transfected with miR-196b mimic, miR-196b inhibitor and corresponding controls. Then cell viability, migration, invasion, and apoptosis of A549 lung cancer cells either with overexpression or with suppression of miR-196b were estimated sequentially. Next, dual luciferase activity assay was performed to clarify whether Runx2 was a direct target of miR-196b. Finally, the expressions of main factors associated with epithelial mesenchymal transition (EMT), PI3K/AKT/GSK3β, Smad, and JNK pathways were detected by western blot. Results: MiR-196b expression was significantly decreased in A549, H1650 and H1299 cell lines compared with in WI-38 and HEL-1 cell lines. Overexpression of miR-196b suppressed cell viability, migration, invasion, and induced apoptosis as well as inhibited TGF-β induced EMT process in A549 cells. In addition, Runx2 was a putative target of miR-196b, and Runx2 silence remarkably increased cell apoptosis and abolished the promotive effects of miR-196b suppression on cell viability, migration and invasion. Finally, miR-196b also mediated its action by inactivation of PI3K/AKT/GSK3β, Smad, and JNK pathways by down-regulation of Runx2. Conclusion: MiR-196b functions as a tumor suppressor that inhibited cell growth and metastasis of lung cancer cells by targeting Runx2. These findings provided further evidences for treatment of lung cancer.


Sign in / Sign up

Export Citation Format

Share Document