scholarly journals CRISPR/Cas9-mediated knockout of clinically relevant alloantigenes in human primary T cells

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Elahe Kamali ◽  
Fatemeh Rahbarizadeh ◽  
Zohreh Hojati ◽  
Morten Frödin

Abstract Background The ability of CRISPR/Cas9 to mutate any desired genomic locus is being increasingly explored in the emerging area of cancer immunotherapy. In this respect, current efforts are mostly focused on the use of autologous (i.e. patient-derived) T cells. The autologous approach, however, has drawbacks in terms of manufacturing time, cost, feasibility and scalability that can affect therapeutic outcome or wider clinical application. The use of allogeneic T cells from healthy donors may overcome these limitations. For this strategy to work, the endogenous T cell receptor (TCR) needs to be knocked out in order to reduce off-tumor, graft-versus-host-disease (GvHD). Furthermore, CD52 may be knocked out in the donor T cells, since this leaves them resistant to the commonly used anti-CD52 monoclonal antibody lymphodepletion regimen aiming to suppress rejection of the infused T cells by the recipient. Despite the great prospect, genetic manipulation of human T cells remains challenging, in particular how to deliver the engineering reagents: virus-mediated delivery entails the inherent risk of altering cancer gene expression by the genomically integrated CRISPR/Cas9. This is avoided by delivery of CRISPR/Cas9 as ribonucleoproteins, which, however, are fragile and technically demanding to produce. Electroporation of CRISPR/Cas9 expression plasmids would bypass the above issues, as this approach is simple, the reagents are robust and easily produced and delivery is transient. Results Here, we tested knockout of either TCR or CD52 in human primary T cells, using electroporation of CRISPR/Cas9 plasmids. After validating the CRISPR/Cas9 constructs in human 293 T cells by Tracking of Indels by Decomposition (TIDE) and Indel Detection by Amplicon Analysis (IDAA) on-target genomic analysis, we evaluated their efficacy in primary T cells. Four days after electroporation with the constructs, genomic analysis revealed a knockout rate of 12–14% for the two genes, which translated into 7–8% of cells showing complete loss of surface expression of TCR and CD52 proteins, as determined by flow cytometry analysis. Conclusion Our results demonstrate that genomic knockout by electroporation of plasmids encoding CRISPR/Cas9 is technically feasible in human primary T cells, albeit at low efficiency.

1983 ◽  
Vol 158 (4) ◽  
pp. 1077-1091 ◽  
Author(s):  
P Marrack ◽  
R Endres ◽  
R Shimonkevitz ◽  
A Zlotnik ◽  
D Dialynas ◽  
...  

We have examined the role of the murine homologue of Leu-3 T4, L3T4, in recognition of antigen in association with products of the major histocompatibility complex (Ag/MHC) by murine T cell hybridomas. A series of ovalbumin (OVA)/I-Ad-specific T cell hybridomas were ranked in their sensitivity to Ag/I by measuring their ability to respond to low doses of OVA, or their sensitivity to inhibition by anti-I-Ad antibodies. T cell hybridomas with low apparent avidity for OVA/I-Ad, i.e. that did not respond well to low concentrations of OVA and were easily inhibited by anti-I-Ad, were also easily inhibited by anti-L3T4 antibodies. The reverse was true for T cell hybridomas with apparent high avidity for Ag/MHC. We found that the presence of low doses of anti-L3T4 antibodies caused T cell hybridomas to respond less well to low doses of Ag, and to be more easily inhibited by anti-I-Ad antibodies. These results suggested that the role of the L3T4 molecule is to increase the overall avidity of the reaction between T cells and Ag-presenting cells. In support of this idea was the discovery of several L3T4- subclones of one of our L3T4+ T cell hybridomas, D0.11.10. The L3T4- subclones had the same amount of receptor for OVA/I-Ad as their L3T4+ parent, as detected by an anti-receptor monoclonal antibody. The L3T4- subclones, however, responded less well to low doses of OVA, and were more easily inhibited by anti-I-Ad antibodies than their L3T4/ parent. These results showed that the L3T4 molecule was not required for surface expression of, or functional activity of, the T cell receptor for Ag/MHC. The L3T4 molecule did, however, increase the sensitivity with which the T cell reacted with Ag/MHC on Ag-presenting cells.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2555-2555 ◽  
Author(s):  
Roman Galetto ◽  
Céline Lebuhotel ◽  
Agnès Gouble ◽  
Nuria Mencia-Trinchant ◽  
Cruz M Nicole ◽  
...  

Abstract The remissions achieved using autologous T-cells expressing chimeric antigen receptors (CARs) in patients with advanced B cell leukemia and lymphomas have encouraged the use of CAR technology to treat different types of cancers by targeting distinct tumor-specific antigens. Since the current autologous approach utilizes CAR T-cells manufactured on a "per patient" basis, we propose an alternative approach based on the use of a standardized platform for manufacturing T-cells from third-party healthy donors to generate allogeneic "off-the-shelf" CAR T-cell-based frozen products. In the present work we have adapted this allogeneic platform to the production of T-cells targeting CD123, the transmembrane alpha chain of the interleukin-3 receptor, which is expressed on tumor cells from the majority of patients with Acute Myeloid Leukemia (AML). Multiple antigen recognition domains were screened in the context of different CAR architectures to identify candidates displaying activity against cells expressing variable levels of the CD123 antigen. The three lead candidates were tested in an orthotopic human AML cell line xenograft mouse model. From the three candidates that displayed comparable activity in vitro, we found two candidates capable of eradicating tumor cells in vivo with high efficiency. Subsequently, Transcription Activator-Like Effector Nuclease (TALEN) gene editing technology was used to inactivate the TCRα constant (TRAC) gene, eliminating the potential for engineered T-cells to mediate Graft versus Host Disease (GvHD). Editing of the TRAC gene can be achieved at high frequencies, and allows efficient amplification of TCR-deficient T-cells that no longer mediate alloreactivity in a xeno-GvHD mouse model. In addition, we show that TCR-deficient T-cells display equivalent in vitro and in vivo activity to non-edited T-cells expressing the same CAR. We have performed an initial evaluation of the expression of CD123 in AML patients and found an average cell surface expression of CD123 was of 67% in leukemic blasts (95% CI 48-82), 71% in CD34+CD38+ cells (95% CI 56-86), and 64% in CD34+CD38- (95% CI 41-87). Importantly, we have found that CD123 surface expression persists in CD34+CD38-CD90- cells after therapy in at least 20% of patients in remission (n=25), thus emphasizing the relevance of the target. Currently, the sensitivity of primary AML cells to CAR T-cells is being tested. Finally, we will also present our large scale manufacturing process of allogeneic CD123 specific T-cells from healthy donors, showing the feasibility for this off-the-shelf T-cell product that could be available for administration to a large number of AML patients. Disclosures Galetto: Cellectis SA: Employment. Lebuhotel:Cellectis SA: Employment. Gouble:Cellectis SA: Employment. Smith:Cellectis: Employment, Patents & Royalties.


1991 ◽  
Vol 174 (1) ◽  
pp. 293-296 ◽  
Author(s):  
M Iwashima ◽  
M M Davis ◽  
Y H Chien

CD4 and CD8 have been useful surface markers for alpha/beta T cell maturation. In an alpha/beta T cell receptor (TCR) transgenic SCID mice system, it has been shown that alpha/beta TCR alone is sufficient to induce CD4 and CD8 surface expression on thymic T cells. Although the late embryonic thymic gamma/delta T cells are predominately single and double positive, it has not been clear if gamma/delta TCR has a similar capacity. In this study, we show that when transgenes encoding the earliest embryonic gamma/delta TCR are coexpressed with the SCID defect, the gamma/delta transgenes promote the appearance of both the CD4-8- and CD4+8+ T cells in the thymus. Furthermore, the expression of CD4 and CD8 does not require continuous surface gamma/delta TCR expression. These results indicate that gamma/delta TCR alone can promote the CD4/8 surface expression, and may suggest a role for gamma/delta T cells in initiating normal thymic ontogeny.


1994 ◽  
Vol 180 (5) ◽  
pp. 1685-1691 ◽  
Author(s):  
F Davodeau ◽  
M A Peyrat ◽  
J Gaschet ◽  
M M Hallet ◽  
F Triebel ◽  
...  

Structural diversity of lymphocyte antigen receptors (the immunoglobulin [Ig] of B cells and the alpha/beta or gamma/delta T cell receptor [TCR] of T cells) is generated through somatic rearrangements of V, D, and J gene segments. Classically, these recombination events involve gene segments from the same Ig or TCR locus. However, occurrence of "trans" rearrangements between distinct loci has also been described, although in no instances was the surface expression of the corresponding protein under normal physiological conditions demonstrated. Here we show that hybrid TCR genes generated by trans rearrangement between V gamma and (D) J beta elements are translated into functional antigen receptor chains, paired with TCR alpha chains. Like classical alpha/beta T cells, cells expressing these hybrid TCR chains express either CD4 or CD8 coreceptors and are frequently alloreactive. These results have several implications in terms of T cell repertoire selection and relationships between TCR structure and specificity. First, they suggest that TCR alloreactivity is determined by the repertoire selection processes operating during lymphocyte development rather than by structural features specific to V alpha V beta regions. Second, they suggest the existence of close structural relationships between gamma/delta and alpha/beta TCR and more particularly, between V gamma and V beta regions. Finally, since a significant fraction of PBL (at least 1/10(4)) expressed hybrid TCR chains on their surface, these observations indicate that trans rearrangements significantly contribute to the combinatorial diversification of the peripheral immune repertoire.


Blood ◽  
2011 ◽  
Vol 118 (13) ◽  
pp. 3528-3537 ◽  
Author(s):  
Maryam Ahmadi ◽  
Judith W. King ◽  
Shao-An Xue ◽  
Cécile Voisine ◽  
Angelika Holler ◽  
...  

Abstract The function of T-cell receptor (TCR) gene modified T cells is dependent on efficient surface expression of the introduced TCR α/β heterodimer. We tested whether endogenous CD3 chains are rate-limiting for TCR expression and antigen-specific T-cell function. We show that co-transfer of CD3 and TCR genes into primary murine T cells enhanced TCR expression and antigen-specific T-cell function in vitro. Peptide titration experiments showed that T cells expressing introduced CD3 and TCR genes recognized lower concentration of antigen than T cells expressing TCR only. In vivo imaging revealed that TCR+CD3 gene modified T cells infiltrated tumors faster and in larger numbers, which resulted in more rapid tumor elimination compared with T cells modified by TCR only. After tumor clearance, TCR+CD3 engineered T cells persisted in larger numbers than TCR-only T cells and mounted a more effective memory response when rechallenged with antigen. The data demonstrate that provision of additional CD3 molecules is an effective strategy to enhance the avidity, anti-tumor activity and functional memory formation of TCR gene modified T cells in vivo.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 930-930
Author(s):  
Michael Hudecek ◽  
Thomas M Schmitt ◽  
Sivasubramanian Baskar ◽  
Wen-Chung Chang ◽  
David G Maloney ◽  
...  

Abstract Abstract 930 The orphan tyrosine kinase receptor ROR1 was previously identified as a highly expressed gene by expression profiling of B cell chronic lymphocytic leukemia (B-CLL), [Klein et al. J Exp Med 2001], and has subsequently been shown to be expressed on mantle cell lymphoma (MCL) and a subset of B cell acute lymphoblastic leukemias (B-ALL). ROR1 encodes a 105 kDa protein that contains Ig-like, cysteine rich, kringle, tyrosine kinase and proline rich domains and is expressed during embryonic development but is absent on normal adult tissues including non-malignant B cells. The function of ROR1 in normal and malignant cells is not known, although secreted Wnt proteins have been proposed as candidate ligands. Analysis of ROR1 protein expression using specific polyclonal antibodies revealed uniform, stable, and restricted cell surface expression on B-CLL, suggesting this molecule is a candidate for targeted immunotherapy of B cell malignancies [Baskar et al. Clin Cancer Res 2008]. We constructed a lentiviral vector that encodes a chimeric antigen receptor (CAR) consisting of single chain variable (scFV) fragments of the heavy and light chains of a murine monoclonal antibody specific for ROR1, linked to an IgG4 Fc domain, the T cell receptor CD3 zeta chain and a CD28 costimulatory domain. The specificity and function of the ROR1 CAR was compared with a similarly designed CAR specific for the CD20 molecule, which is expressed on both malignant and normal B cells, and is being targeted with gene-modified T cells in clinical trials. Primary human CD8+ T cells were transduced with the ROR1 and CD20-specific CARs respectively, and T cells expressing high levels of the receptors were sort-purified using an anti-Fc antibody. T cells that expressed either the ROR1-specific CAR or the CD20-specific CAR efficiently lysed primary B-CLL samples (5/5) obtained from patients with advanced disease, and also lysed a MCL cell line (JeKo-1), and a ROR1+ B-ALL cell line (BALL-1). ROR1-specific T cells did not recognize the myeloid leukemia cell line K562, but efficiently lysed K562 cells that had been transfected to express ROR1, confirming the specific recognition of ROR1 on target cells. Consistent with the expression pattern of the target molecules, T cells that expressed the CD20-specific CAR also efficiently lysed normal primary and EBV-transformed B cells, but T cells that expressed the ROR1-specific CAR did not recognize nonmalignant or EBV-transformed B cells. Activation of normal B cells by engagement of the B cell receptor or activation through CD40 induced B cell proliferation and upregulation of the CD80 and CD86 costimulatory molecules, but did not result in ROR1 surface expression by flow cytometry or recognition by T cells that expressed the ROR1-specific CAR. These results suggest that targeting ROR1 with gene-modified T cells may have advantages over targeting B cell-lineage restricted molecules such as CD19 and CD20 that are expressed on normal mature B cells. Studies to determine whether ROR1 is expressed during a stage of normal B cell development are in progress. ROR1 is highly conserved in non-human primates and this model may be suitable to determine potential toxicities of adoptive immunotherapy with ROR1-specific CAR expressing T cells. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 203 (6) ◽  
pp. 1543-1550 ◽  
Author(s):  
Iannis Aifantis ◽  
Craig H. Bassing ◽  
Annette I. Garbe ◽  
Katie Sawai ◽  
Frederick W. Alt ◽  
...  

It is well established that the pre–T cell receptor for antigen (TCR) is responsible for efficient expansion and differentiation of thymocytes with productive TCRβ rearrangements. However, Ptcra- as well as Tcra-targeting experiments have suggested that the early expression of Tcra in CD4−CD8− cells can partially rescue the development of αβ CD4+CD8+ cells in Ptcra-deficient mice. In this study, we show that the TCR Eδ but not Eα enhancer function is required for the cell surface expression of αβTCR on immature CD4−CD8− T cell precursors, which play a crucial role in promoting αβ T cell development in the absence of pre-TCR. Thus, αβTCR expression by CD4−CD8− thymocytes not only represents a transgenic artifact but occurs under physiological conditions.


Blood ◽  
2006 ◽  
Vol 109 (6) ◽  
pp. 2331-2338 ◽  
Author(s):  
Jürgen Kuball ◽  
Michelle L. Dossett ◽  
Matthias Wolfl ◽  
William Y. Ho ◽  
Ralf-Holger Voss ◽  
...  

Abstract Adoptive transfer of T lymphocytes is a promising treatment for a variety of malignancies but often not feasible due to difficulties generating T cells that are reactive with the targeted antigen from patients. To facilitate rapid generation of cells for therapy, T cells can be programmed with genes encoding the α and β chains of an antigen-specific T-cell receptor (TCR). However, such exogenous α and β chains can potentially assemble as pairs not only with each other but also with endogenous TCR α and β chains, thereby generating αβTCR pairs of unknown specificity as well as reducing the number of exogenous matched αβTCR pairs at the cell surface. We demonstrate that introducing cysteines into the constant region of the α and β chains can promote preferential pairing with each other, increase total surface expression of the introduced TCR chains, and reduce mismatching with endogenous TCR chains. This approach should improve both the efficacy and safety of ongoing efforts to use TCR transfer as a strategy to generate tumor-reactive T cells.


1988 ◽  
Vol 8 (12) ◽  
pp. 5459-5469
Author(s):  
L J Berg ◽  
B Fazekas de St Groth ◽  
F Ivars ◽  
C C Goodnow ◽  
S Gilfillan ◽  
...  

To examine the influences responsible for shaping the T-cell repertoire in vivo, we have introduced T-cell receptors of defined specificity into mice. In this report, we analyze transgenic mice carrying a T-cell receptor alpha-chain gene from a pigeon cytochrome c-reactive T-cell line. A variant of this construct, which has the immunoglobulin heavy-chain enhancer inserted into the JC intron, was also introduced into mice. Addition of the enhancer increased the steady-state level of transgene-encoded mRNA three- to fivefold in cultured T cells, leading to a two- to threefold increase in surface expression. In vivo, the difference between these two constructs was even more significant, increasing the number of transgene-positive cells from approximately 5 to 70% and the T-cell receptor surface density two- to threefold. Surprisingly, while surface expression of either type of transgene was limited to T cells, we found little tissue specificity with respect to transcription. In T cells expressing the alpha chain from the enhancer-containing construct, immunoprecipitation with a 2B4 alpha-specific monoclonal antibody revealed the expected disulfide-linked dimer. Costaining of these T cells with the 2B4 alpha-specific monoclonal antibody versus anti-CD3 indicated that expression of the transgene-encoded alpha chain precludes expression of endogenous alpha chains on the majority of cells; in contrast, 2B4 alpha-chain expression from the construct lacking the enhancer is inefficient at suppressing endogenous alpha-chain expression. In mice of the enhancer lineage, Southern blot analysis indicated suppression of endogenous alpha-chain rearrangements in T-cell populations, consistent with the observed allelic exclusion at the cellular level. Interestingly, newborn, but not adult, mice of this lineage also showed an increase in retention of unrearranged delta-chain loci in thymocyte DNA, presumably resulting from the suppression of alpha-chain rearrangements. This observation indicates that at least a fraction of alpha:beta-positive T cells have never attempted to produce functional delta rearrangements, thus suggesting that alpha:beta and gamma:delta T cells may be derived from different T-cell compartments (at least during the early phases of T-cell differentiation).


Sign in / Sign up

Export Citation Format

Share Document