scholarly journals ERK/Nrf2 pathway activation by caffeic acid in HepG2 cells alleviates its hepatocellular damage caused by t-butylhydroperoxide-induced oxidative stress

Author(s):  
Sung-Yong Yang ◽  
Min Cheol Pyo ◽  
Mi-Hyun Nam ◽  
Kwang-Won Lee
RSC Advances ◽  
2018 ◽  
Vol 8 (62) ◽  
pp. 35474-35484 ◽  
Author(s):  
Dongrui Zhao ◽  
Dongmei Shi ◽  
Jinyuan Sun ◽  
Hehe Li ◽  
Mouming Zhao ◽  
...  

Vanillin, 4-methylguaiacol, and 4-ethylguaiacol widely exist in Gujinggong Chinese baijiu and could protect HepG2 cells against oxidative stress via activating the Nrf2 pathway.


2016 ◽  
Vol 73 (3) ◽  
pp. 405-414 ◽  
Author(s):  
Xingan Xing ◽  
Zheshu Jiang ◽  
Xue Tang ◽  
Panpan Wang ◽  
Yingrui Li ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Liang Chen ◽  
Sun-Li Hu ◽  
Jun Xie ◽  
De-Yi Yan ◽  
She-Ji Weng ◽  
...  

The widespread use of therapeutic glucocorticoids has increased the frequency of glucocorticoid-induced osteoporosis (GIOP). One of the potential pathological processes of GIOP is an increased level of oxidative stress and mitochondrial dysfunction, which eventually leads to osteoblast apoptosis. Proanthocyanidins (PAC) are plant-derived antioxidants that have therapeutic potential against GIOP. In our study, a low dose of PAC was nontoxic to healthy osteoblasts and restored osteogenic function in dexamethasone- (Dex-) treated osteoblasts by suppressing oxidative stress, mitochondrial dysfunction, and apoptosis. Mechanistically, PAC neutralized Dex-induced damage in the osteoblasts by activating the Nrf2 pathway, since silencing Nrf2 partly eliminated the protective effects of PAC. Furthermore, PAC injection restored bone mass and promoted the expression of Nrf2 in the distal femur of Dex-treated osteoporotic rats. In summary, PAC protect osteoblasts against Dex-induced oxidative stress and mitochondrial dysfunction via the Nrf2 pathway activation and may be a promising drug for treating GIOP.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Tetsuya Oishi ◽  
Daisuke Matsumaru ◽  
Nao Ota ◽  
Hiroshi Kitamura ◽  
Tianxiang Zhang ◽  
...  

AbstractAge-related hearing loss (AHL) is a progressive sensorineural hearing loss in elderly people. Although no prevention or treatments have been established for AHL, recent studies have demonstrated that oxidative stress is closely related to pathogenesis of AHL, suggesting that suppression of oxidative stress leads to inhibition of AHL progression. NRF2 is a master transcription factor that regulates various antioxidant proteins and cytoprotection factors. To examine whether NRF2 pathway activation prevents AHL, we used Keap1-knockdown (Keap1FA/FA) mice, in which KEAP1, a negative regulator of NRF2, is decreased, resulting in the elevation of NRF2 activity. We compared 12-month-old Keap1FA/FA mice with age-matched wild-type (WT) mice in the same breeding colony. In the Keap1FA/FA mice, the expression levels of multiple NRF2 target genes were verified to be significantly higher than the expression levels of these genes in the WT mice. Histological analysis showed that cochlear degeneration at the apical and middle turns was ameliorated in the Keap1FA/FA mice. Auditory brainstem response (ABR) thresholds in the Keap1FA/FA mice were significantly lower than those in the WT mice, in particular at low–mid frequencies. Immunohistochemical detection of oxidative stress markers suggested that oxidative stress accumulation was attenuated in the Keap1FA/FA cochlea. Thus, we concluded that NRF2 pathway activation protects the cochlea from oxidative damage during aging, in particular at the apical and middle turns. KEAP1-inhibiting drugs and phytochemicals are expected to be effective in the prevention of AHL.


2019 ◽  
Vol 110 ◽  
pp. 85-94 ◽  
Author(s):  
Xiaoqin Ding ◽  
Tunyu Jian ◽  
Yuexian Wu ◽  
Yuanyuan Zuo ◽  
Jiawei Li ◽  
...  

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1262
Author(s):  
Sandra Catalina Garzón-Castaño ◽  
Francisco Javier Jiménez-González ◽  
Luz Angela Veloza ◽  
Juan Carlos Sepúlveda-Arias

Background: A large number of chemical compounds exert their antioxidant effects by activation of key transcriptional regulatory mechanisms, such as the transcription factor Nrf2. The aim of this study was to evaluate the activation of the Keap1-Nrf2 pathway by both the n-butanol extract obtained from the inner bark of Tabebuia rosea (Bertol) DC and specioside isolated from this extract. Methods: The antioxidant activity of the extract and specioside isolated from the inner bark of T. rosea were evaluated using the oxygen radical absorbance capacity (ORAC) and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH) techniques, whereas their effects on the viability of HepG2 cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The effects of the compound and the extract on activating the Keap1-Nrf2 pathway were evaluated using a Nrf2 Transcription Factor Assay kit. Induction of the Nrf2-mediated antioxidant response genes HMOX-1 and NQO1 was evaluated by real-time PCR. The protective effects against H2O2-induced oxidative stress in HepG2 cells was determined as the percent protection using the MTT method. Results: Both the n-butanol extract and specioside exhibited activity at low concentrations without affecting cellular viability, since the cell viability was greater than 80% after 24 hours of exposure at each tested concentration. In addition, Nrf2 dissociated from Keap1 after treatment with the n-butanol extract at a concentration of 0.25 µg/mL after 4 hours of exposure. An increase in the Nrf2 level in the cytoplasm after 4 hours of exposure to 2 μM specioside was observed. Nrf2 levels stabilized in the nucleus 12 hours after stimulation with both specioside and the extract. After 6 hours of stimulation, both the extract and specioside induced the expression of HMOX-1 and NQO1. Conclusion: The n-butanol extract from the inner bark of T. rosea and specioside produced protective effects against H2O2-induced oxidative stress in HepG2 cells.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1262
Author(s):  
Sandra Catalina Garzón-Castaño ◽  
Francisco Javier Jiménez-González ◽  
Luz Angela Veloza ◽  
Juan Carlos Sepúlveda-Arias

Background: A large number of chemical compounds exert their antioxidant effects by activation of key transcriptional regulatory mechanisms, such as the transcription factor Nrf2. The aim of this study was to evaluate the activation of the Keap1-Nrf2 pathway by both the n-butanol extract obtained from the inner bark of Tabebuia rosea (Bertol) DC and specioside isolated from this extract. Methods: The antioxidant activity of the extract and specioside isolated from the inner bark of T. rosea were evaluated using the oxygen radical absorbance capacity (ORAC) and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH) techniques, whereas their effects on the viability of HepG2 cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The effects of the compound and the extract on activating the Keap1-Nrf2 pathway were evaluated using a Nrf2 Transcription Factor Assay kit. Induction of the Nrf2-mediated antioxidant response genes HMOX-1 and NQO1 was evaluated by real-time PCR. The protective effects against H2O2-induced oxidative stress in HepG2 cells was determined as the percent protection using the MTT method. Results: Both the n-butanol extract and specioside exhibited activity at low concentrations without affecting cellular viability, since the cell viability was greater than 80% after 24 hours of exposure at each tested concentration. In addition, Nrf2 dissociated from Keap1 after treatment with the n-butanol extract at a concentration of 0.25 µg/mL after 4 hours of exposure. An increase in the Nrf2 level in the cytoplasm after 4 hours of exposure to 2 μM specioside was observed. Nrf2 levels stabilized in the nucleus 12 hours after stimulation with both specioside and the extract. After 6 hours of stimulation, both the extract and specioside induced the expression of HMOX-1 and NQO1. Conclusion: The n-butanol extract from the inner bark of T. rosea and specioside produced protective effects against H2O2-induced oxidative stress in HepG2 cells.


2017 ◽  
Vol 8 ◽  
Author(s):  
G. R. Sharath Babu ◽  
Tamatam Anand ◽  
N. Ilaiyaraja ◽  
Farhath Khanum ◽  
N. Gopalan

2020 ◽  
Vol 160 ◽  
pp. 1-12
Author(s):  
Yangyunyi Dong ◽  
Jing Zhao ◽  
Qingyu Zhu ◽  
Hongyu Liu ◽  
Jun Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document