scholarly journals The effect of 3D-printed plastic teeth on scores in a tooth morphology course in a Chinese university

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Helin Wang ◽  
Haokun Xu ◽  
Junhua Zhang ◽  
Shibin Yu ◽  
Meiqing Wang ◽  
...  

Abstract Background The tooth morphology course is an important basic dental course. However, it is difficult to fully reflect the three-dimensional (3D) morphological characteristics of tooth structure in two-dimensional pictures in traditional textbooks. The aim of this study was to assess the effect of 3D-printed plastic model teeth in the teaching of tooth morphology. Methods Twenty-two undergraduate students who matriculated at the School of Stomatology, the Fourth Medical University, in 2014 and 23 who matriculated in 2016 participated in the study. Each student who matriculated in 2016 was given a full set of fourteen standard 3D-printed plastic model teeth for use during the learning process, and an anonymous questionnaire was used to evaluate the usefulness of the 3D-printed plastic model teeth from the perspective of the students. Results There was no significant difference between the two groups in the scores of the theoretical examination or the total score. However, for the score of the sculpted gypsum teeth, the students who used the 3D-printed plastic model teeth in their studies scored significantly higher (P = 0.002). More than 90% of the students thought that the 3D-printed plastic model teeth were of great help or were very helpful for mastering the anatomy of teeth and for carving the gypsum teeth. Conclusion Standard 3D-printed plastic teeth can effectively assist students in learning tooth morphology by transforming two-dimensional pictures and descriptions in the textbook into a 3D conformation, effectively promoting students’ learning and mastery of tooth morphology and structure. Additionally, the results suggest that 3D-printed plastic model teeth are of great help to the students in mastering and improving their carving skills.

2020 ◽  
Author(s):  
Helin Wang ◽  
Haokun Xu ◽  
Junhua Zhang ◽  
Shibin Yu ◽  
Meiqing Wang ◽  
...  

Abstract Background: The tooth morphology course is an important basic dental course. However, it is difficult to fully reflect the three-dimensional (3D) morphological characteristics of tooth structure in two-dimensional pictures in traditional textbooks. The aim of this study was to assess the effect of 3D-printed plastic model teeth in the teaching of tooth morphology. Methods: Twenty-two undergraduate students who matriculated at the School of Stomatology, the Fourth Medical University, in 2014 and 23 who matriculated in 2016 participated in the study. Each student who matriculated in 2016 was given a full set of fourteen standard 3D-printed plastic model teeth for use during the learning process, and an anonymous questionnaire was used to evaluate the usefulness of the 3D-printed plastic model teeth from the perspective of the students. Results: There was no significant difference between the two groups in the scores of the theoretical examination or the total score. However, for the score of the sculpted gypsum teeth, the students who used the 3D-printed plastic model teeth in their studies scored significantly higher (P=0.002). More than 90% of the students thought that the 3D-printed plastic model teeth were of great help or were very helpful for mastering the anatomy of teeth and for carving the gypsum teeth. Conclusion: Standard 3D-printed plastic teeth can effectively assist students in learning tooth morphology by transforming two-dimensional pictures and descriptions in the textbook into a 3D conformation, effectively promoting students' learning and mastery of tooth morphology and structure. Additionally, the results suggest that 3D-printed plastic model teeth are of great help to the students in mastering and improving their carving skills.


2020 ◽  
Author(s):  
Helin Wang ◽  
Haokun Xu ◽  
Junhua Zhang ◽  
Shibin Yu ◽  
Meiqing Wang ◽  
...  

Abstract Background: The "tooth morphology" course is an important basic stomatology course. But it is difficult to fully reflect the 3D morphological characteristics of tooth structure in the two-dimensional pictures in traditional textbooks. The aim of this study was to assess the effect of 3D-printed plastic model teeth in the teaching of tooth morphology. Methods: Forty-five undergraduate stomatology students who had matriculated at the Fourth Medical University in 2014 and 23 who had matriculated in 2016 were involved in the study. Each student who matriculated in 2016 was given a full set of 14 standard 3D-printed plastic model teeth for use during the learning process, and an anonymous questionnaire was used to evaluate the 3D-printed plastic model teeth from the perspective of the students. Results: There was no significant difference in the scores of the theoretical examination and the total score between the two groups. However, for the score of the sculpted gypsum teeth, students who used the 3D-printed plastic model teeth in their studies scored significantly higher (P=0.002). More than 90% of the students thought that the 3D-printed plastic model teeth were of great help or were very helpful for mastering the anatomy of teeth and for carving the plaster teeth.Conclusion: The standard 3D-printed plastic teeth can effectively assist students in learning tooth morphology by transforming the two-dimensional pictures and descriptions in the textbook into a 3D conformation, effectively promoting students' learning and mastery of tooth morphology and structure. Additionally, the results suggest that the 3D-printed plastic teeth are of great help to the students in mastering and improving their carving skills.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1550
Author(s):  
Soo-Yeon Yoo ◽  
Seong-Kyun Kim ◽  
Seong-Joo Heo ◽  
Jai-Young Koak ◽  
Joung-Gyu Kim

Previous studies on accuracy of three-dimensional (3D) printed model focused on full arch measurements at few points. The aim of this study was to examine the dimensional accuracy of 3D-printed models which were teeth-prepped for three-unit fixed prostheses, especially at margin and proximal contact areas. The prepped dental model was scanned with a desktop scanner. Using this reference file, test models were fabricated by digital light processing (DLP), Multi-Jet printing (MJP), and stereo-lithography apparatus (SLA) techniques. We calculated the accuracy (trueness and precision) of 3D-printed models on 3D planes, and deviations of each measured points at buccolingual and mesiodistal planes. We also analyzed the surface roughness of resin printed models. For overall 3D analysis, MJP showed significantly higher accuracy (trueness) than DLP and SLA techniques; however, there was not any statistically significant difference on precision. For deviations on margins of molar tooth and distance to proximal contact, MJP showed significantly accurate results; however, for a premolar tooth, there was no significant difference between the groups. 3D color maps of printed models showed contraction buccolingually, and surface roughness of the models fabricated by MJP technique was observed as the lowest. The accuracy of the 3D-printed resin models by DLP, MJP, and SLA techniques showed a clinically acceptable range to use as a working model for manufacturing dental prostheses


Author(s):  
Chia-An Wu ◽  
Andrew Squelch ◽  
Zhonghua Sun

Aim: To determine a printing material that has both elastic property and radiology equivalence close to real aorta for simulation of endovascular stent graft repair of aortic dissection. Background: With the rapid development of three-dimensional (3D) printing technology, a patient-specific 3D printed model is able to help surgeons to make better treatment plan for Type B aortic dissection patients. However, the radiological properties of most 3D printing materials have not been well characterized. This study aims to investigate the appropriate materials for printing human aorta with mechanical and radiological properties similar to the real aortic computed tomography (CT) attenuation. Objective: Quantitative assessment of CT attenuation of different materials used in 3D printed models of aortic dissection for developing patient-specific 3D printed aorta models to simulate type B aortic dissection. Method: A 25-mm length of aorta model was segmented from a patient’s image dataset with diagnosis of type B aortic dissection. Four different elastic commercial 3D printing materials, namely Agilus A40 and A50, Visijet CE-NT A30 and A70 were selected and printed with different hardness. Totally four models were printed out and conducted CT scanned twice on a 192-slice CT scanner using the standard aortic CT angiography protocol, with and without contrast inside the lumen.Five reference points with region of interest (ROI) of 1.77 mm2 were selected at the aortic wall and intimal flap and their Hounsfield units (HU) were measured and compared with the CT attenuation of original CT images. The comparison between the patient’s aorta and models was performed through a paired-sample t-test to determine if there is any significant difference. Result: The mean CT attenuation of aortic wall of the original CT images was 80.7 HU. Analysis of images without using contrast medium showed that the material of Agilus A50 produced the mean CT attenuation of 82.6 HU, which is similar to that of original CT images. The CT attenuation measured at images acquired with other three materials was significantly lower than that of original images (p<0.05). After adding contrast medium, Visijet CE-NT A30 had an average CT attenuation of 90.6 HU, which is close to that of the original images with statistically significant difference (p>0.05). In contrast, the CT attenuation measured at images acquired with other three materials (Agilus A40, A50 and Visiject CE-NT A70) was 129 HU, 135 HU and 129.6 HU, respectively, which is significantly higher than that of original CT images (p<0.05). Conclusion: Both Visijet CE-NT and Agilus have tensile strength and elongation close to real patient’s tissue properties producing similar CT attenuation. Visijet CE-NT A30 is considered the appropriate material for printing aorta to simulate contrast-enhanced CT imaging of type B aortic dissection. Due to lack of body phantom in the experiments, further research with simulation of realistic anatomical body environment should be conducted.


2016 ◽  
Vol 40 (2) ◽  
pp. 201-205 ◽  
Author(s):  
C. J. Daly ◽  
J. M. Bulloch ◽  
M. Ma ◽  
D. Aidulis

Sophisticated three-dimensional animation and video compositing software enables the creation of complex multimedia instructional movies. However, if the design of such presentations does not take account of cognitive load and multimedia theories, then their effectiveness as learning aids will be compromised. We investigated the use of animated images versus still images by creating two versions of a 4-min multimedia presentation on vascular neuroeffector transmission. One version comprised narration and animations, whereas the other animation comprised narration and still images. Fifty-four undergraduate students from level 3 pharmacology and physiology undergraduate degrees participated. Half of the students watched the full animation, and the other half watched the stills only. Students watched the presentation once and then answered a short essay question. Answers were coded and marked blind. The “animation” group scored 3.7 (SE: 0.4; out of 11), whereas the “stills” group scored 3.2 (SE: 0.5). The difference was not statistically significant. Further analysis of bonus marks, awarded for appropriate terminology use, detected a significant difference in one class (pharmacology) who scored 0.6 (SE: 0.2) versus 0.1 (SE: 0.1) for the animation versus stills group, respectively ( P = 0.04). However, when combined with the physiology group, the significance disappeared. Feedback from students was extremely positive and identified four main themes of interest. In conclusion, while increasing student satisfaction, we do not find strong evidence in favor of animated images over still images in this particular format. We also discuss the study design and offer suggestions for further investigations of this type.


2018 ◽  
Vol 841 ◽  
pp. 636-653
Author(s):  
Ting-Yueh Chang ◽  
Falin Chen ◽  
Min-Hsing Chang

A three-dimensional linear stability analysis is carried out for a convecting layer in which both the temperature and solute distributions are linear in the horizontal direction. The three-dimensional results show that, for $Le=3$ and 100, the most unstable mode occurs invariably as the longitudinal mode, a vortex roll with its axis perpendicular to the longitudinal plane, suggesting that the two-dimensional results are sufficient to illustrate the stability characteristics of the convecting layer. Two-dimensional results show that the stability boundaries of the transverse mode (a vortex roll with its axis perpendicular to the transverse plane) and the longitudinal modes are virtually overlapped in the regime dominated by thermal diffusion and the regime dominated by solute diffusion, while these two modes hold a significant difference in the regime the salt-finger instability prevails. More precisely, the instability area in terms of thermal Grashof number $Gr$ and solute Grashof number $Gs$ is larger for the longitudinal mode than the transverse mode, implying that, under any circumstance, the longitudinal mode is always more unstable than the transverse mode.


2009 ◽  
Vol 3 (2) ◽  
Author(s):  
A. Mohamed ◽  
A. Erdman ◽  
G. Timm

Previous biomechanical models of the penis that have attempted to simulate penile erections have either been limited to two-dimensional geometry, simplified three-dimensional geometry or made inaccurate assumptions altogether. Most models designed the shaft of the penis as a one-compartment pressurized vessel fixed at one end, when in reality it is a two-compartments pressurized vessel, in which the compartments diverge as they enter the body and are fixed at two separate points. This study began by designing simplified two-dimensional and three-dimensional models of the erect penis using Finite Element Analysis (FEA) methods with varying anatomical considerations for analyzing structural stresses, axial buckling and lateral deformation. The study then validated the results by building physical models replicating the computer models. Finally a more complex and anatomically accurate model of the penis was designed and analyzed. There was a significant difference in the peak von-Mises stress distribution between the one-compartment pressurized vessel and the more anatomically correct two-compartments pressurized vessel. Furthermore, the two-compartments diverging pressurized vessel was found to have more structural integrity when subject to external lateral forces than the one-compartment pressurized vessel. This study suggests that Mother Nature has favored an anatomy of two corporal cavernosal bodies separated by a perforated septum as opposed to one corporal body, due to better structural integrity of the tunica albuginea when subject to external forces.


2019 ◽  
Vol 43 (3) ◽  
pp. 345-349 ◽  
Author(s):  
Xiao-Min Zhang ◽  
Jian-Yun Yu ◽  
Yuan Yang ◽  
Cui-Ping Feng ◽  
Jing Lyu ◽  
...  

A small private online course (SPOC) supports blended learning on a small scale, enabling students to have a more comprehensive and deeper learning experience. It also provides instructors with a flexible and feasible model to better understand the students’ learning needs and to supervise students’ learning behaviors. In this study, we adopted SPOC flipped classroom blended teaching in the physiology course for clinical undergraduate students of Kunming Medical University. Compared with the control group [lecture-based learning (LBL)], the SPOC flipped classroom method significantly increased the scores of students in the preclass test (65.13 ± 12.45 vs. 53.46 ± 8.09, SPOC vs. LBL) and postclass test (80.43 ± 14.29 vs. 69.01 ± 12.81, SPOC vs. LBL), which is induced by students’ increased interest in self-learning. More importantly, the significant difference between the preclass scores of the two groups suggested that the video lecture-based preview is more effective than the textbook-based preview. The study indicated that the SPOC flipped classroom was effective in enhancing the examination scores of students, reflecting an improved learning efficiency and a deeper understanding of the knowledge. In summary, the flipped classroom based on SPOC improves learning outcomes compared with LBL and has a wide application in the learning of basic medical courses.


2020 ◽  
Vol 23 (2) ◽  
pp. 71-79
Author(s):  
Hyungsuk Kim ◽  
Chang Hyun Yoo ◽  
Soo Bin Park ◽  
Hyun Seok Song

Background: The glenoid version of the shoulder joint correlates with the stability of the glenohumeral joint and the clinical results of total shoulder arthroplasty. We sought to analyze and compare the glenoid version measured by traditional axial two-dimensional (2D) computed tomography (CT) and three-dimensional (3D) reconstructed images at different levels.Methods: A total of 30 cases, including 15 male and 15 female patients, who underwent 3D shoulder CT imaging was randomly selected and matched by sex consecutively at one hospital. The angular difference between the scapular body axis and 2D CT slice axis was measured. The glenoid version was assessed at three levels (midpoint, upper one-third, and center of the lower circle of the glenoid) using Friedman’s method in the axial plane with 2D CT images and at the same level of three different transverse planes using a 3D reconstructed image. Results: The mean difference between the scapular body axis on the 3D reconstructed image and the 2D CT slice axis was 38.4°. At the level of the midpoint of the glenoid, the measurements were 1.7° ± 4.9° on the 2D CT images and −1.8° ± 4.1° in the 3D reconstructed image. At the level of the center of the lower circle, the measurements were 2.7° ± 5.2° on the 2D CT images and −0.5° ± 4.8° in the 3D reconstructed image. A statistically significant difference was found between the 2D CT and 3D reconstructed images at all three levels. Conclusions: The glenoid version is measured differently between axial 2D CT and 3D reconstructed images at three levels. Use of 3D reconstructed imaging can provide a more accurate glenoid version profile relative to 2D CT. The glenoid version is measured differently at different levels.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Yasser A. Noureldin ◽  
Ana Stoica ◽  
Pepa Kaneva ◽  
Sero Andonian

In this prospective educational study, 10 medical students (novices) were randomized to practice two basic laparoscopic tasks from the MISTELS program, namely, Pegboard Transfer (PT) and Intracorporeal Knot Tying (IKT) tasks, using either a 2D or a 3D laparoscopic platform. There was no significant difference between both groups in the baseline assessments (PT task: 130.8 ± 18.7 versus 151.5 ± 33.4; p=0.35) (IKT task: 123.9 ± 41.0 versus 122.9 ± 44.9; p=0.986). Following two training sessions, there was a significant increase in the scores of PT task for the 2D (130.8 ± 18.7 versus 222.6 ± 7.0; p = 0.0004) and the 3D groups (151.5 ± 33.4 versus 211.7 ± 16.2; p = 0.0001). Similarly, there was a significant increase in the scores of IKT task for the 2D (123.9 ± 41.0 versus 373.3 ± 47.2; p = 0.003) and the 3D groups (122.9 ± 44.9 versus 338.8 ± 28.6; p = 0.0005). However, there was no significant difference in the final assessment scores between 2D and 3D groups for both tasks (p > 0.05). Therefore, 3D laparoscopic systems do not provide an advantage over 2D systems for training novices in basic laparoscopic skills.


Sign in / Sign up

Export Citation Format

Share Document