scholarly journals Dimensional Accuracy of Dental Models for Three-Unit Prostheses Fabricated by Various 3D Printing Technologies

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1550
Author(s):  
Soo-Yeon Yoo ◽  
Seong-Kyun Kim ◽  
Seong-Joo Heo ◽  
Jai-Young Koak ◽  
Joung-Gyu Kim

Previous studies on accuracy of three-dimensional (3D) printed model focused on full arch measurements at few points. The aim of this study was to examine the dimensional accuracy of 3D-printed models which were teeth-prepped for three-unit fixed prostheses, especially at margin and proximal contact areas. The prepped dental model was scanned with a desktop scanner. Using this reference file, test models were fabricated by digital light processing (DLP), Multi-Jet printing (MJP), and stereo-lithography apparatus (SLA) techniques. We calculated the accuracy (trueness and precision) of 3D-printed models on 3D planes, and deviations of each measured points at buccolingual and mesiodistal planes. We also analyzed the surface roughness of resin printed models. For overall 3D analysis, MJP showed significantly higher accuracy (trueness) than DLP and SLA techniques; however, there was not any statistically significant difference on precision. For deviations on margins of molar tooth and distance to proximal contact, MJP showed significantly accurate results; however, for a premolar tooth, there was no significant difference between the groups. 3D color maps of printed models showed contraction buccolingually, and surface roughness of the models fabricated by MJP technique was observed as the lowest. The accuracy of the 3D-printed resin models by DLP, MJP, and SLA techniques showed a clinically acceptable range to use as a working model for manufacturing dental prostheses

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3499 ◽  
Author(s):  
Jae-Won Choi ◽  
Jong-Ju Ahn ◽  
Keunbada Son ◽  
Jung-Bo Huh

The aim of this study was to evaluate the accuracy of dental models fabricated by conventional, milling, and three-dimensional (3D) printing methods. A reference model with inlay, single crown, and three-unit fixed dental prostheses (FDP) preparations was prepared. Conventional gypsum models (CON) were manufactured from the conventional method. Digital impressions were obtained by intraoral scanner, which were converted into physical models such as milled gypsum models (MIL), stereolithography (SLA), and digital light processing (DLP) 3D printed photopolymer models (S3P and D3P). Models were extracted as standard triangulated language (STL) data by reference scanner. All STL data were superimposed by 3D analysis software and quantitative and qualitative analysis was performed using root mean square (RMS) values and color difference map. Statistical analyses were performed using the Kruskal–Wallis test and Mann–Whitney U test with Bonferroni’s correction. For full arch, the RMS value of trueness and precision in CON was significantly smaller than in the other groups (p < 0.05/6 = 0.008), and there was no significant difference between S3P and D3P (p > 0.05/6 = 0.008). On the other hand, the RMS value of trueness in CON was significantly smaller than in the other groups for all prepared teeth (p < 0.05/6 = 0.008), and there was no significant difference between MIL and S3P (p > 0.05/6 = 0.008). In conclusion, conventional gypsum models showed better accuracy than digitally milled and 3D printed models.


Author(s):  
Keunbada Son ◽  
Wan-Sun Lee ◽  
Kyu-Bok Lee

This in vitro study aimed to evaluate the 3D analysis for complete arch, half arch, and tooth preparation region by using four analysis software programs. The CAD reference model (CRM; N = 1 per region) and CAD test models (CTMs; N = 20 per software) of complete arch, half arch, and tooth preparation were obtained by using scanners. For both CRM and CTMs, mesh data other than the same area were deleted. For 3D analysis, four analysis software programs (Geomagic control X, GOM Inspect, Cloudcompare, and Materialise 3-matic) were used in the alignment of CRM and CTMs as well as in the 3D comparison. Root mean square (RMS) was regarded as the result of the 3D comparison. One-way analysis of variance and Tukey honestly significant difference tests were performed for statistical comparison of four analysis software programs (α = 0.05). In half-arch and tooth preparation region, the four analysis software programs showed a significant difference in RMS values (p < 0.001), but in complete-arch region, no significant difference was found among the four software programs (p = 0.139). As the area of the virtual cast for 3D analysis becomes smaller, variable results are obtained depending on the software program used, and the difference in results among software programs are not considered in the 3D analysis for complete-arch region.


2020 ◽  
Vol 14 (1) ◽  
pp. 37-40
Author(s):  
Sara Tavakolizadeh ◽  
Mohammad Javad Razaghi ◽  
Pedram Pakravan ◽  
Majid Sedaghat Monfared ◽  
Elaheh Beyabanaki ◽  
...  

Background . This study aimed to evaluate the effect of different pouring times and spacer thicknesses on the three-dimensional accuracy of casts made of 3D-printed custom trays. Methods. A partial edentulous maxillary model was scanned for fabricating custom acrylic trays. Twenty custom trays were created using a CAD/CAM system and divided into two groups in terms of their spacer thicknesses (2 mm and 4 mm). All the trays were designed with 2-mm thickness, multiple retentive holes measuring 2 mm in diameter, and three interior seating stops (two on the edentulous ridge and one on the incisal edge of the central incisors). Impressions were made using monophasic polyvinyl siloxane and poured in two different times (one hour and 24 hours after removal) with type IV dental stone. All the casts were scanned to measure three distances (inter-buccal cusps, inter-palatal cusps, and inter-fossa distances) between the two first premolars. The data were analyzed with two-way ANOVA and Bonferroni test at a significance level of 0.05. Results. There was no significant difference between the 3D accuracy of casts made using two different spacer thicknesses poured at 1-hour and 24-hour intervals. However, there was a difference between casts made after 1 hour and 24 hours when using custom trays with 2 mm of spacer thickness in terms of inter-buccal distance. Conclusion. There was no significant difference between the accuracy of casts made using custom trays with either 2 or 4 mm of spacer thickness, which were poured 1 hour or 24 hours after tray removal.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jae-Young Kim ◽  
Michael D. Han ◽  
Kug Jin Jeon ◽  
Jong-Ki Huh ◽  
Kwang-Ho Park

Abstract Background The purpose of this study was to investigate the differences in configuration and dimensions of the anterior loop of the inferior alveolar nerve (ALIAN) in patients with and without mandibular asymmetry. Method Preoperative computed tomography images of patients who had undergone orthognathic surgery from January 2016 to December 2018 at a single institution were analyzed. Subjects were classified into two groups as “Asymmetry group” and “Symmetry group”. The distance from the most anterior and most inferior points of the ALIAN (IANant and IANinf) to the vertical and horizontal reference planes were measured (dAnt and dInf). The distance from IANant and IANinf to the mental foramen were also calculated (dAnt_MF and dInf_MF). The length of the mandibular body and symphysis area were measured. All measurements were analyzed using 3D analysis software. Results There were 57 total eligible subjects. In the Asymmetry group, dAnt and dAnt_MF on the non-deviated side were significantly longer than the deviated side (p < 0.001). dInf_MF on the non-deviated side was also significantly longer than the deviated side (p = 0.001). Mandibular body length was significantly longer on the non-deviated side (p < 0.001). There was no significant difference in length in the symphysis area (p = 0.623). In the Symmetry group, there was no difference between the left and right sides for all variables. Conclusion In asymmetric patients, there is a difference tendency in the ALIAN between the deviated and non-deviated sides. In patients with mandibular asymmetry, this should be considered during surgery in the anterior mandible.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1524
Author(s):  
Sadikalmahdi Abdella ◽  
Souha H. Youssef ◽  
Franklin Afinjuomo ◽  
Yunmei Song ◽  
Paris Fouladian ◽  
...  

Three-dimensional (3D) printing is among the rapidly evolving technologies with applications in many sectors. The pharmaceutical industry is no exception, and the approval of the first 3D-printed tablet (Spiratam®) marked a revolution in the field. Several studies reported the fabrication of different dosage forms using a range of 3D printing techniques. Thermosensitive drugs compose a considerable segment of available medications in the market requiring strict temperature control during processing to ensure their efficacy and safety. Heating involved in some of the 3D printing technologies raises concerns regarding the feasibility of the techniques for printing thermolabile drugs. Studies reported that semi-solid extrusion (SSE) is the commonly used printing technique to fabricate thermosensitive drugs. Digital light processing (DLP), binder jetting (BJ), and stereolithography (SLA) can also be used for the fabrication of thermosensitive drugs as they do not involve heating elements. Nonetheless, degradation of some drugs by light source used in the techniques was reported. Interestingly, fused deposition modelling (FDM) coupled with filling techniques offered protection against thermal degradation. Concepts such as selection of low melting point polymers, adjustment of printing parameters, and coupling of more than one printing technique were exploited in printing thermosensitive drugs. This systematic review presents challenges, 3DP procedures, and future directions of 3D printing of thermo-sensitive formulations.


Author(s):  
Chia-An Wu ◽  
Andrew Squelch ◽  
Zhonghua Sun

Aim: To determine a printing material that has both elastic property and radiology equivalence close to real aorta for simulation of endovascular stent graft repair of aortic dissection. Background: With the rapid development of three-dimensional (3D) printing technology, a patient-specific 3D printed model is able to help surgeons to make better treatment plan for Type B aortic dissection patients. However, the radiological properties of most 3D printing materials have not been well characterized. This study aims to investigate the appropriate materials for printing human aorta with mechanical and radiological properties similar to the real aortic computed tomography (CT) attenuation. Objective: Quantitative assessment of CT attenuation of different materials used in 3D printed models of aortic dissection for developing patient-specific 3D printed aorta models to simulate type B aortic dissection. Method: A 25-mm length of aorta model was segmented from a patient’s image dataset with diagnosis of type B aortic dissection. Four different elastic commercial 3D printing materials, namely Agilus A40 and A50, Visijet CE-NT A30 and A70 were selected and printed with different hardness. Totally four models were printed out and conducted CT scanned twice on a 192-slice CT scanner using the standard aortic CT angiography protocol, with and without contrast inside the lumen.Five reference points with region of interest (ROI) of 1.77 mm2 were selected at the aortic wall and intimal flap and their Hounsfield units (HU) were measured and compared with the CT attenuation of original CT images. The comparison between the patient’s aorta and models was performed through a paired-sample t-test to determine if there is any significant difference. Result: The mean CT attenuation of aortic wall of the original CT images was 80.7 HU. Analysis of images without using contrast medium showed that the material of Agilus A50 produced the mean CT attenuation of 82.6 HU, which is similar to that of original CT images. The CT attenuation measured at images acquired with other three materials was significantly lower than that of original images (p<0.05). After adding contrast medium, Visijet CE-NT A30 had an average CT attenuation of 90.6 HU, which is close to that of the original images with statistically significant difference (p>0.05). In contrast, the CT attenuation measured at images acquired with other three materials (Agilus A40, A50 and Visiject CE-NT A70) was 129 HU, 135 HU and 129.6 HU, respectively, which is significantly higher than that of original CT images (p<0.05). Conclusion: Both Visijet CE-NT and Agilus have tensile strength and elongation close to real patient’s tissue properties producing similar CT attenuation. Visijet CE-NT A30 is considered the appropriate material for printing aorta to simulate contrast-enhanced CT imaging of type B aortic dissection. Due to lack of body phantom in the experiments, further research with simulation of realistic anatomical body environment should be conducted.


2019 ◽  
Vol 9 (9) ◽  
pp. 1798 ◽  
Author(s):  
Son ◽  
Yu ◽  
Yoon ◽  
Lee

This study set out to compare the three-dimensional (3D) trueness of crowns produced from three types of lithium disilicate blocks. The working model was digitized, and single crowns (maxillary left second molar) were designed using computer-aided design (CAD) software. To produce a crown design model (CDM), a crown design file was extracted from the CAD software. In addition, using the CDM file and a milling machine (N = 20), three types of lithium disilicate blocks (e.max CAD, HASS Rosetta, and VITA Suprinity) were processed. To produce a crown scan model (CSM), the inner surface of each fabricated crown was digitized using a touch-probe scanner. In addition, using 3D inspection software, the CDM was partitioned (into marginal, axis, angular, and occlusal regions), the CDM and CSM were overlapped, and a 3D analysis was conducted. A Kruskal–Wallis test (α = 0.05) was conducted with all-segmented teeth with the root mean square (RMS), and they were analyzed using the Mann–Whitney U-test and the Bonferroni correction method as a post hoc test. There was a significant difference in the trueness of the crowns according to the type of lithium disilicate block (p < 0.001). The overall RMS value was at a maximum for e.max (42.9 ± 4.4 µm), followed by HASS (30.1 ± 9.0 µm) and then VITA (27.3 ± 7.9 µm). However, there was no significant difference between HASS and VITA (p = 0.541). There were significant differences in all regions inside the crown (p < 0.001). There was a significantly high trueness in the angular region inside the crown (p < 0.001). A correction could thus be applied in the CAD process, considering the differences in the trueness by the type of lithium disilicate block. In addition, to attain a crown with an excellent fit, it is necessary to provide a larger setting space for the angular region during the CAD process.


2020 ◽  
Vol 32 (7) ◽  
pp. 741-752
Author(s):  
Yongqiang Wang ◽  
Changhui Feng ◽  
Ruoyu Fei ◽  
Yu Luo

To study the ageing characteristics of epoxy resin composite insulation in dry-type transformers in high-temperature environments, glass fibre-reinforced epoxy resin samples were placed in a hot air ageing environment at 130°C for testing. Dielectric properties, partial discharge (PD), microscopic morphology, three-dimensional morphology and Fourier transform infrared spectroscopy of aged samples were periodically tested. The results show that during the ageing process, the change in the surface morphology of the sample leads to an overall upward trend in surface roughness, and the older the sample, the faster the surface roughness increases; changes in the surface morphology and three-dimensional morphology of the material constitute the basis for judging the condition of the insulating surface and the state of ageing development. Microcracks are the direct cause of debonding of glass fibres and epoxy matrix. Degradation of the sample during the ageing process generates many free radicals, which enhances the polarisation ability of the sample and increases both the dielectric constant and the dielectric loss factor. The real part of the complex dielectric constant is more sensitive to the ageing response of the sample. The older the sample, the greater the effect on the results of the dielectric spectrum test. Since the aged sample generates more hot electrons during the PD process and makes it easier to inject electrons into the material, the PD of the sample is rendered more intense by thermal ageing. There is a significant difference between the degradation mechanism of the thermal ageing and PD. The samples subjected to PD after thermal ageing produce new groups, and the degradation of the samples is more severe than that caused by thermal ageing, or PD, alone.


2020 ◽  
Vol 7 ◽  
Author(s):  
Farnaz Ghorbani ◽  
Melika Sahranavard ◽  
Zohre Mousavi Nejad ◽  
Dejian Li ◽  
Ali Zamanian ◽  
...  

In this study, bioactive glass nanoparticles (BGNPs) with an average diameter of less than 10 nm were synthesized using a sol-gel method and then characterized by transmission electron microscopy (TEM), differential scanning calorimetric (DSC), Fourier transforms infrared spectroscopy (FTIR), and x-ray spectroscopy (XRD). Afterward, three dimensional (3D)-printed polycaprolactone (PCL) scaffolds along with fused deposition modeling (FDM) were incorporated with BGNPs, and the surface of the composite constructs was then functionalized by coating with the gelatin methacryloyl (GelMA) under UV irradiation. Field emission scanning electron microscopy micrographs demonstrated the interconnected porous microstructure with an average pore diameter of 260 µm and homogeneous distribution of BGNPs. Therefore, no noticeable shrinkage was observed in 3D-printed scaffolds compared with the computer-designed file. Besides, the surface was uniformly covered by GelMA, and no effect of surface modification was observed on the microstructure while surface roughness increased. The addition of the BGNPs the to PCL scaffolds showed a slight change in pore size and porosity; however, it increased surface roughness. According to mechanical analysis, the compression strength of the scaffolds was increased by the BGNPs addition and surface modification. Also, a reduction was observed in the absorption capacity and biodegradation of scaffolds in phosphate-buffered saline media after the incorporation of BGNPs, while the presence of the GelMA layer increased the swelling potential and stability of the composite matrixes. Moreover, the capability of inducing bio-mineralization of hydroxyapatite-like layers, as a function of BGNPs content, was proven by FE-SEM micrographs, EDX spectra, and x-ray diffraction spectra (XRD) after soaking the obtained samples in concentrated simulated body fluid. A higher potential of the modified constructs to interact with the aqueous media led to better precipitation of minerals. According to in-vitro assays, the modified scaffolds can provide a suitable surface for the attachment and spreading of the bone marrow mesenchymal stem cells (BMSCs). Furthermore, the number of the proliferated cells confirms the biocompatibility of the scaffolds, especially after a modification process. Cell differentiation was verified by alkaline phosphatase activity as well as the expression of osteogenic genes such as osteocalcin and osteopontin. Accordingly, the scaffolds showed an initial potential for reconstruction of the injured bone.


2020 ◽  
Vol 4 (2) ◽  
pp. 47 ◽  
Author(s):  
Kyriaki-Evangelia Aslani ◽  
Dimitrios Chaidas ◽  
John Kechagias ◽  
Panagiotis Kyratsis ◽  
Konstantinos Salonitis

This paper investigates the quality performance of FDM 3D printed models with thin walls. The design of experiments method (DOE) was used and nine models of the same size were fabricated in a low-cost 3D printer using polylactic acid (PLA) material. Two limited studied parameters were considered (extraction temperature and wall thickness), each one having three levels. External X and Y dimensions were measured using a micrometer, as well as four surface roughness parameters (Ra, Rz, Rt, Rsm) with a surface tester. Two optimization techniques (the Taguchi approach and Grey relational analysis) were utilized along with statistical analysis to examine how the temperature and wall thickness affect the dimensional accuracy and the surface quality of the parts. The results showed that high extraction temperature and median wall thickness values optimize both dimensional accuracy and surface roughness, while temperature is the most important factor.


Sign in / Sign up

Export Citation Format

Share Document