scholarly journals Single-cell morphological characterization of CRH neurons throughout the whole mouse brain

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yu Wang ◽  
Pu Hu ◽  
Qinghong Shan ◽  
Chuan Huang ◽  
Zhaohuan Huang ◽  
...  

Abstract Background Corticotropin-releasing hormone (CRH) is an important neuromodulator that is widely distributed in the brain and plays a key role in mediating stress responses and autonomic functions. While the distribution pattern of fluorescently labeled CRH-expressing neurons has been studied in different transgenic mouse lines, a full appreciation of the broad diversity of this population and local neural connectivity can only come from integration of single-cell morphological information as a defining feature. However, the morphologies of single CRH neurons and the local circuits formed by these neurons have not been acquired at brain-wide and dendritic-scale levels. Results We screened the EYFP-expressing CRH-IRES-Cre;Ai32 mouse line to reveal the morphologies of individual CRH neurons throughout the whole mouse brain by using a fluorescence micro-optical sectioning tomography (fMOST) system. Diverse dendritic morphologies and projection fibers of CRH neurons were found in various brain regions. Follow-up reconstructions showed that hypothalamic CRH neurons had the smallest somatic volumes and simplest dendritic branches and that CRH neurons in several brain regions shared a common bipolar morphology. Further investigations of local CRH neurons in the medial prefrontal cortex unveiled somatic depth-dependent morphologies of CRH neurons that exhibited three types of mutual connections: basal dendrites (upper layer) with apical dendrites (layer 3); dendritic-somatic connections (in layer 2/3); and dendritic-dendritic connections (in layer 4). Moreover, hypothalamic CRH neurons were classified into two types according to their somatic locations and characteristics of dendritic varicosities. Rostral-projecting CRH neurons in the anterior parvicellular area had fewer and smaller dendritic varicosities, whereas CRH neurons in the periventricular area had more and larger varicosities that were present within dendrites projecting to the third ventricle. Arborization-dependent dendritic spines of CRH neurons were detected, among which the most sophisticated types were found in the amygdala and the simplest types were found in the hypothalamus. Conclusions By using the CRH-IRES-Cre;Ai32 mouse line and fMOST imaging, we obtained region-specific morphological distributions of CRH neurons at the dendrite level in the whole mouse brain. Taken together, our findings provide comprehensive brain-wide morphological information of stress-related CRH neurons and may facilitate further studies of the CRH neuronal system.

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Xueqin Hou ◽  
Cuiping Rong ◽  
Fugang Wang ◽  
Xiaoqian Liu ◽  
Yi Sun ◽  
...  

Stress can cause a variety of central nervous system disorders, which are critically mediated by the γ-aminobutyric acid (GABA) system in various brain structures. GABAergic neurons have different subsets, some of which coexpress certain neuropeptides that can be found in the digestive system. Accumulating evidence demonstrates that the gut-brain axis, which is primarily regulated by the vagus nerve, is involved in stress, suggesting a communication between the “gut-vagus-brain” pathway and the GABAergic neuronal system. Here, we first summarize the evidence that the GABAergic system plays an essential role in stress responses. In addition, we review the effects of stress on different brain regions and GABAergic neuron subpopulations, including somatostatin, parvalbumin, ionotropic serotonin receptor 5-HT3a, cholecystokinin, neuropeptide Y, and vasoactive intestinal peptide, with regard to signaling events, behavioral changes, and pathobiology of neuropsychiatric diseases. Finally, we discuss the gut-brain bidirectional communications and the connection of the GABAergic system and the gut-vagus-brain pathway.


Endocrinology ◽  
2011 ◽  
Vol 152 (6) ◽  
pp. 2387-2399 ◽  
Author(s):  
Shel-Hwa Yeo ◽  
Allan E. Herbison

The important role of kisspeptin neurons in the regulation of GnRH neuron activity is now well accepted. However, the ways in which kisspeptin neurons located in the arcuate nucleus (ARN) and rostral periventricular area of the third ventricle (RP3V) control GnRH neurons are poorly understood. The present study used anterograde and retrograde tracing techniques to establish the neuronal projection patterns of kisspeptin cell populations in the female mouse brain. Anterograde tracing studies revealed that kisspeptin neurons in the ARN innervated a wide number of hypothalamic and associated limbic region nuclei, whereas RP3V kisspeptin neurons projected to a smaller number of mostly medially located hypothalamic nuclei. Retrograde tracing confirmed a major projection of RP3V kisspeptin neurons to the ARN and showed that kisspeptin neurons located in the rostral half of the ARN projected to the rostral preoptic area. Peripheral administration of Fluorogold was found to label the majority of GnRH neurons but no kisspeptin neurons. Together, these studies highlight the complexity of the brain kisspeptin neuronal system and indicate that both ARN and RP3V kisspeptin neurons participate in a variety of limbic functions. In relation to the GnRH neuronal network, these investigations demonstrate that, alongside the RP3V kisspeptin cells, rostral ARN kisspeptin neurons may also project to GnRH neuron cell bodies. However, no kisspeptin neurons innervate GnRH nerve terminals in the external layer of the median eminence. These studies provide a neuroanatomical framework for the further elucidation of the functions of the ARN and RP3V kisspeptin neuron populations.


2020 ◽  
Author(s):  
Yu Wang ◽  
Pu Hu ◽  
Qinghong Shan ◽  
Chuan Huang ◽  
Zhaohuan Huang ◽  
...  

AbstractCorticotropin-releasing hormone (CRH) is an important neuromodulator with wide distribution in the brain. Here, we screened the CRH-IRES-Cre;Ai32 mouse line to reveal the morphologies of individual CRH neurons throughout the mouse brain by using fluorescence micro-optical sectioning tomography (fMOST) system. Diverse dendritic morphologies and projection fibers were found in various brain regions. Reconstructions showed hypothalamic CRH neurons had the smallest somatic volumes and simplest dendritic branches, and CRH neurons in several regions shared a bipolar morphology. Further investigations in the medial prefrontal cortex unveiled somatic depth-dependent morphologies that exhibited three types of connections and CRH neurons in the anterior parvicellular area of hypothalamus had fewer and smaller Herring bodies whereas in the periventricular area had more and larger Herring bodies that were present within fibers projecting to the third ventricle. Our findings provide the most comprehensive intact morphologies of CRH neurons throughout the mouse brain that is currently available.


2008 ◽  
Vol 39 (01) ◽  
Author(s):  
R Trollmann ◽  
J Schneider ◽  
D Wenzel ◽  
W Rascher ◽  
O Ogunshola ◽  
...  

2021 ◽  
Vol 79 (4) ◽  
pp. 1701-1711
Author(s):  
Tetsuo Hayashi ◽  
Shotaro Shimonaka ◽  
Montasir Elahi ◽  
Shin-Ei Matsumoto ◽  
Koichi Ishiguro ◽  
...  

Background: Human tauopathy brain injections into the mouse brain induce the development of tau aggregates, which spread to functionally connected brain regions; however, the features of this neurotoxicity remain unclear. One reason may be short observational periods because previous studies mostly used mutated-tau transgenic mice and needed to complete the study before these mice developed neurofibrillary tangles. Objective: To examine whether long-term incubation of Alzheimer’s disease (AD) brain in the mouse brain cause functional decline. Methods: We herein used Tg601 mice, which overexpress wild-type human tau, and non-transgenic littermates (NTg) and injected an insoluble fraction of the AD brain into the unilateral hippocampus. Results: After a long-term (17–19 months) post-injection, mice exhibited learning deficits detected by the Barnes maze test. Aggregated tau pathology in the bilateral hippocampus was more prominent in Tg601 mice than in NTg mice. No significant changes were observed in the number of Neu-N positive cells or astrocytes in the hippocampus, whereas that of Iba-I-positive microglia increased after the AD brain injection. Conclusion: These results potentially implicate tau propagation in functional decline and indicate that long-term changes in non-mutated tau mice may reflect human pathological conditions.


2012 ◽  
Vol 2 (2) ◽  
pp. 203-211 ◽  
Author(s):  
Wei Sun ◽  
Seunggeun Lee ◽  
Vasyl Zhabotynsky ◽  
Fei Zou ◽  
Fred A. Wright ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document