scholarly journals Multi-pathogen infections and Alzheimer’s disease

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Dana Vigasova ◽  
Michal Nemergut ◽  
Barbora Liskova ◽  
Jiri Damborsky

AbstractAlzheimer’s disease (AD) is a chronic neurodegenerative disease associated with the overproduction and accumulation of amyloid-β peptide and hyperphosphorylation of tau proteins in the brain. Despite extensive research on the amyloid-based mechanism of AD pathogenesis, the underlying cause of AD is not fully understood. No disease-modifying therapies currently exist, and numerous clinical trials have failed to demonstrate any benefits. The recent discovery that the amyloid-β peptide has antimicrobial activities supports the possibility of an infectious aetiology of AD and suggests that amyloid-β plaque formation might be induced by infection. AD patients have a weakened blood–brain barrier and immune system and are thus at elevated risk of microbial infections. Such infections can cause chronic neuroinflammation, production of the antimicrobial amyloid-β peptide, and neurodegeneration. Various pathogens, including viruses, bacteria, fungi, and parasites have been associated with AD. Most research in this area has focused on individual pathogens, with herpesviruses and periodontal bacteria being most frequently implicated. The purpose of this review is to highlight the potential role of multi-pathogen infections in AD. Recognition of the potential coexistence of multiple pathogens and biofilms in AD’s aetiology may stimulate the development of novel approaches to its diagnosis and treatment. Multiple diagnostic tests could be applied simultaneously to detect major pathogens, followed by anti-microbial treatment using antiviral, antibacterial, antifungal, and anti-biofilm agents.

Author(s):  
Jiri Damborsky ◽  
Dana Vigasova ◽  
Michal Nemergut ◽  
Barbora Liskova

Alzheimer’s disease (AD) is a chronic neurodegenerative disease associated with the overproduction and accumulation of amyloid-β peptide and hyperphosphorylation of tau proteins in the brain. Despite extensive research on the amyloid-based mechanism of AD pathogenesis, the underlying cause of AD remains poorly understood. No disease-modifying therapies currently exist, and numerous clinical trials have failed to demonstrate any benefits. The recent discovery that the amyloid-β peptide has antimicrobial activities supports the possibility of an infectious aetiology of AD and suggests that amyloid-β plaque formation might be induced by infection. AD patients have a weakened blood-brain barrier and immune system and are thus at elevated risk of microbial infections. Such infections can cause chronic neuroinflammation, production of the antimicrobial amyloid-β peptide, and neurodegeneration. Various pathogens, including viruses, bacteria, fungi, and parasites have been associated with AD. Most research in this area has focused on individual pathogens, with herpesviruses and periodontal bacteria being most frequently implicated. The purpose of this review is to highlight the potential role of multi-pathogen infections in AD. Recognition of the potential coexistence of multiple pathogens and biofilms in AD's aetiology may stimulate the development of novel approaches to its diagnosis and treatment. Multiple diagnostic tests could be applied simultaneously to detect major pathogens, followed by anti-microbial treatment using antiviral, antibacterial, antifungal, and anti-biofilm agents.


2020 ◽  
Vol 21 (23) ◽  
pp. 9036
Author(s):  
Anna Chiarini ◽  
Ubaldo Armato ◽  
Peng Hu ◽  
Ilaria Dal Prà

Fibrillar aggregates and soluble oligomers of both Amyloid-β peptides (Aβs) and hyperphosphorylated Tau proteins (p-Tau-es), as well as a chronic neuroinflammation are the main drivers causing progressive neuronal losses and dementia in Alzheimer’s disease (AD). However, the underlying pathogenetic mechanisms are still much disputed. Several endogenous neurotoxic ligands, including Aβs, and/or p-Tau-es activate innate immunity-related danger-sensing/pattern recognition receptors (PPRs) thereby advancing AD’s neuroinflammation and progression. The major PRR families involved include scavenger, Toll-like, NOD-like, AIM2-like, RIG-like, and CLEC-2 receptors, plus the calcium-sensing receptor (CaSR). This quite intricate picture stresses the need to identify the pathogenetically topmost Aβ-activated PRR, whose signaling would trigger AD’s three main drivers and their intra-brain spread. In theory, the candidate might belong to any PRR family. However, results of preclinical studies using in vitro nontumorigenic human cortical neurons and astrocytes and in vivo AD-model animals have started converging on the CaSR as the pathogenetically upmost PRR candidate. In fact, the CaSR binds both Ca2+ and Aβs and promotes the spread of both Ca2+ dyshomeostasis and AD’s three main drivers, causing a progressive neurons’ death. Since CaSR’s negative allosteric modulators block all these effects, CaSR’s candidacy for topmost pathogenetic PRR has assumed a growing therapeutic potential worth clinical testing.


2021 ◽  
Vol 26 (1) ◽  
pp. 40-46
Author(s):  
S.S. Ostrovska ◽  
V.F. Shatorna ◽  
E.O. Liholetov

The concept of the viral etiology of Alzheimer's disease (AD) was first proposed in 1982. Its author MJ Ball suggested that the herpes simplex virus (HSV1) may be involved in the pathogenesis of AD, finding that the areas of the brain damaged in acute herpetic encephalitis are the same as those that are affected in AD, and those who survived usually suffer from memory loss and other cognitive impairment typical of AD. Subsequently, in all postmortem brain samples (temporal, frontal, and hippocampal) viral sequences of the viral thymidinekinase gene were found in a high proportion (70-100%) both in AD and in elderly people without it, while in young people and children the virus was found in very low proportions, so it was suggested that HSV1 comes from the peripheral ganglia, where the virus can remain inactive for many years, then enters the brain at an older age due to a decrease in the activity of the immune system. The increased risk of AD is associated with the presence of HSV1 in the brain and the carriage of a specific genetic factor – allele-ε4 of the apolipoprotein E4 gene (APOE-ε4). By themselves, neither HSV1 nor the APOE-ɛ4 allele were found as risk factors for the development of AD but their combination increased the risk of AD development by 12 times and made up 60% in patients with AD. The phenomena involved in the pathophysiology of AD are neurodegenerative changes that occur as a result of fibrillation and deposition of amyloid-β-peptide (Aβ) and neurofibrillary tangles – accumulations of aggregated phosphorylated tau-proteins (P-tau), leading to brain atrophy due to neuronal death. Traditionally, Aβ has been characterized as a catabolic by-product. However, it has recently been shown that Aβ-peptide has antiviral activity and protective effects against HSV infections in the brain. А 16-year study in Thailand with more than 33,000 patients showed that long-term use of antiherpetic drugs reduces the risk of dementia, including AD patients infected with HSV1. Patients with HSV1 infection who received antiherpetic drugs showed a lower risk of all types of dementia compared with the group without these drugs. Their positive effect on stopping the accumulation of amyloid beta and tau protein in the body has been confirmed. In this regard, it is assumed that vaccination against HSV1 may be useful not only for treatment, but also for the prevention of AD.


2014 ◽  
Vol 56 ◽  
pp. 99-110 ◽  
Author(s):  
David Allsop ◽  
Jennifer Mayes

One of the hallmarks of AD (Alzheimer's disease) is the formation of senile plaques in the brain, which contain fibrils composed of Aβ (amyloid β-peptide). According to the ‘amyloid cascade’ hypothesis, the aggregation of Aβ initiates a sequence of events leading to the formation of neurofibrillary tangles, neurodegeneration, and on to the main symptom of dementia. However, emphasis has now shifted away from fibrillar forms of Aβ and towards smaller and more soluble ‘oligomers’ as the main culprit in AD. The present chapter commences with a brief introduction to the disease and its current treatment, and then focuses on the formation of Aβ from the APP (amyloid precursor protein), the genetics of early-onset AD, which has provided strong support for the amyloid cascade hypothesis, and then on the development of new drugs aimed at reducing the load of cerebral Aβ, which is still the main hope for providing a more effective treatment for AD in the future.


2018 ◽  
Vol 15 (6) ◽  
pp. 504-510 ◽  
Author(s):  
Sara Sanz-Blasco ◽  
Maria Calvo-Rodríguez ◽  
Erica Caballero ◽  
Monica Garcia-Durillo ◽  
Lucia Nunez ◽  
...  

Objectives: Epidemiological data suggest that non-steroidal anti-inflammatory drugs (NSAIDs) may protect against Alzheimer's disease (AD). Unfortunately, recent trials have failed in providing compelling evidence of neuroprotection. Discussion as to why NSAIDs effectivity is uncertain is ongoing. Possible explanations include the view that NSAIDs and other possible disease-modifying drugs should be provided before the patients develop symptoms of AD or cognitive decline. In addition, NSAID targets for neuroprotection are unclear. Both COX-dependent and independent mechanisms have been proposed, including γ-secretase that cleaves the amyloid precursor protein (APP) and yields amyloid β peptide (Aβ). Methods: We have proposed a neuroprotection mechanism for NSAIDs based on inhibition of mitochondrial Ca2+ overload. Aβ oligomers promote Ca2+ influx and mitochondrial Ca2+ overload leading to neuron cell death. Several non-specific NSAIDs including ibuprofen, sulindac, indomethacin and Rflurbiprofen depolarize mitochondria in the low µM range and prevent mitochondrial Ca2+ overload induced by Aβ oligomers and/or N-methyl-D-aspartate (NMDA). However, at larger concentrations, NSAIDs may collapse mitochondrial potential (ΔΨ) leading to cell death. Results: Accordingly, this mechanism may explain neuroprotection at low concentrations and damage at larger doses, thus providing clues on the failure of promising trials. Perhaps lower NSAID concentrations and/or alternative compounds with larger dynamic ranges should be considered for future trials to provide definitive evidence of neuroprotection against AD.


2021 ◽  
pp. 1-20
Author(s):  
Yang Yu ◽  
Yang Gao ◽  
Bengt Winblad ◽  
Lars Tjernberg ◽  
Sophia Schedin Weiss

Background: Processing of the amyloid-β protein precursor (AβPP) is neurophysiologically important due to the resulting fragments that regulate synapse biology, as well as potentially harmful due to generation of the 42 amino acid long amyloid β-peptide (Aβ 42), which is a key player in Alzheimer’s disease. Objective: Our aim was to clarify the subcellular locations of the amyloidogenic AβPP processing in primary neurons, including the intracellular pools of the immediate substrate, AβPP C-terminal fragment (APP-CTF) and the product (Aβ 42). To overcome the difficulties of resolving these compartments due to their small size, we used super-resolution microscopy. Methods: Mouse primary hippocampal neurons were immunolabelled and imaged by stimulated emission depletion (STED) microscopy, including three-dimensional, three-channel imaging and image analyses. Results: The first (β-secretase) and second (γ-secretase) cleavages of AβPP were localized to functionally and distally distinct compartments. The β-secretase cleavage was observed in early endosomes, where we were able to show that the liberated N- and C-terminal fragments were sorted into distinct vesicles budding from the early endosomes in soma. Lack of colocalization of Aβ 42 and APP-CTF in soma suggested that γ-secretase cleavage occurs in neurites. Indeed, APP-CTF was, in line with Aβ 42 in our previous study, enriched in the presynapse but absent from the postsynapse. In contrast, full-length AβPP was not detected in either the pre- or the postsynaptic side of the synapse. Furthermore, we observed that endogenously produced and endocytosed Aβ 42 were localized in different compartments. Conclusion: These findings provide critical super-resolved insight into amyloidogenic AβPP processing in primary neurons.


Author(s):  
Priyanka Madhu ◽  
Debapriya Das ◽  
Samrat Mukhopadhyay

The accumulation of toxic soluble oligomers of the amyloid-β peptide (Aβ) is a key step in the pathogenesis of Alzheimer’s disease. There are mainly two conformationally distinct oligomers, namely, prefibrillar...


Sign in / Sign up

Export Citation Format

Share Document