scholarly journals Establishment and characterization of 6 novel patient-derived primary pancreatic ductal adenocarcinoma cell lines from Korean pancreatic cancer patients

2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Mi-Ju Kim ◽  
Min-Sun Kim ◽  
Sung Joo Kim ◽  
Soyeon An ◽  
Jin Park ◽  
...  
2015 ◽  
Vol 148 (4) ◽  
pp. S-13
Author(s):  
Ujjwal M. Mahajan ◽  
Enno Langhoff ◽  
Eithne Costello ◽  
William Greenhalf ◽  
Christopher Halloran ◽  
...  

2019 ◽  
Vol 18 ◽  
pp. 153303381882431 ◽  
Author(s):  
Yan Chen ◽  
Huiyun Zhu ◽  
Yuqiong Wang ◽  
Yingxiao Song ◽  
Pingping Zhang ◽  
...  

The role of microRNA-132 in human pancreatic ductal adenocarcinomas is still ambiguous. We explored the association between microRNA-132 and pancreatic ductal adenocarcinoma prognosis. The expression of microRNA-132 in 50 pancreatic ductal adenocarcinoma tissue samples and pancreatic ductal adenocarcinoma cell lines was examined, and the association between its expression and pancreatic ductal adenocarcinoma prognosis was assessed. Functional analysis and factors downstream of microRNA-132 were investigated. Kaplan-Meier survival curves showed that high expression of microRNA-132 was a significant prognostic factor for 1-year survival of patients with pancreatic ductal adenocarcinoma ( P = .028). Multivariate analysis for overall survival indicated that high expression of microRNA-132 was an independent prognostic factor for patients with pancreatic ductal adenocarcinoma ( P = .044). Low expression of microRNA-132 was associated with poor prognosis in pancreatic ductal adenocarcinoma. Ectopic expression of microRNA-132 significantly inhibited proliferation and promoted apoptosis of 2 pancreatic ductal adenocarcinoma cell lines. Bioinformatic analysis revealed that microRNA-132 may exert its effects on pancreatic ductal adenocarcinoma through downregulating mitogen-activated protein kinase 3 and nuclear transcription factor Y subunit α. The results of this study further our understanding of the relationship between microRNA-132 and pancreatic ductal adenocarcinoma by showing that microRNA-132 might inhibit the progression of pancreatic ductal adenocarcinoma by regulating mitogen-activated protein kinase and nuclear transcription factor Y subunit alpha.


Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1052
Author(s):  
Iranzu González-Boja ◽  
Antonio Viúdez ◽  
Saioa Goñi ◽  
Enrique Santamaria ◽  
Estefania Carrasco-García ◽  
...  

Pancreatic ductal adenocarcinoma, which represents 80% of pancreatic cancers, is mainly diagnosed when treatment with curative intent is not possible. Consequently, the overall five-year survival rate is extremely dismal—around 5% to 7%. In addition, pancreatic cancer is expected to become the second leading cause of cancer-related death by 2030. Therefore, advances in screening, prevention and treatment are urgently needed. Fortunately, a wide range of approaches could help shed light in this area. Beyond the use of cytological or histological samples focusing in diagnosis, a plethora of new approaches are currently being used for a deeper characterization of pancreatic ductal adenocarcinoma, including genetic, epigenetic, and/or proteo-transcriptomic techniques. Accordingly, the development of new analytical technologies using body fluids (blood, bile, urine, etc.) to analyze tumor derived molecules has become a priority in pancreatic ductal adenocarcinoma due to the hard accessibility to tumor samples. These types of technologies will lead us to improve the outcome of pancreatic ductal adenocarcinoma patients.


2014 ◽  
Vol 46 (3) ◽  
pp. 1099-1108 ◽  
Author(s):  
ELISA DALLA POZZA ◽  
ILARIA DANDO ◽  
GIULIA BIONDANI ◽  
JESSICA BRANDI ◽  
CHIARA COSTANZO ◽  
...  

2014 ◽  
Vol 88 (16) ◽  
pp. 9321-9334 ◽  
Author(s):  
S. B. Kasloff ◽  
M. S. Pizzuto ◽  
M. Silic-Benussi ◽  
S. Pavone ◽  
V. Ciminale ◽  
...  

2020 ◽  
Author(s):  
Brenna A. Rheinheimer ◽  
Lukas Vrba ◽  
Bernard W Futscher ◽  
Ronald L Heimark

AbstractBackgroundSLIT2 has been shown to serve as a tumor suppressor in breast, lung, colon, and liver cancers. Additionally, expression of SLIT2 has been shown to be epigenetically regulated in prostate cancer. Therefore, we sought to determine transcriptional regulation of SLIT2 in pancreatic ductal adenocarcinoma.MethodsRNA expression of SLIT2, SLIT3, and ROBO1 was examined in a panel of pancreatic ductal adenocarcinoma cell lines while protein expression of ROBO1 and SLIT2 was examined in tumor tissue. Methylation of the SLIT2 promoter was determined using Sequenom while histone modifications were queried by chromatin immunoprecipitation. Reexpression of SLIT2 was tested by treatment with 5-aza-2’deoxycytidine and Trichostatin A.ResultsPancreatic cancer cell lines fall into three distinct groups based on SLIT2 and ROBO1 expression. The SLIT2 promoter is methylated in pancreatic ductal adenocarcinoma and SLIT2 expression is dependent on the level of methylation at specific CpG sites. Treatment with 5-aza-2’deoxycytidine (but not Trichostatin A) led to SLIT2 reexpression. The SLIT2 promoter is bivalent in pancreatic ductal adenocarcinoma and histone marks around the transcriptional start site are responsible for transcription.ConclusionsLoss of SLIT2 expression modulated by epigenetic silencing may play a role in pancreatic ductal adenocarcinoma progression.


2021 ◽  
Vol 41 (3) ◽  
pp. 1401-1406
Author(s):  
EGLE ZALYTE ◽  
VERONIKA DEDONYTE ◽  
BENEDIKTAS KURLINKUS ◽  
AUDRIUS SILEIKIS ◽  
PETER SCHEMMER ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document