scholarly journals PAX8 expression in high-grade serous ovarian cancer positively regulates attachment to ECM via Integrin β3

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Amata Amy Soriano ◽  
Tiziana de Cristofaro ◽  
Tina Di Palma ◽  
Serena Dotolo ◽  
Priyanka Gokulnath ◽  
...  

Abstract Background Ovarian cancer is the third most common cause of death among gynecologic malignancies worldwide. Understanding the biology and molecular pathogenesis of ovarian epithelial tumors is key to developing improved prognostic indicators and effective therapies. We aimed to determine the effects of PAX8 expression on the migrative, adhesive and survival capabilities of high-grade serous carcinoma cells. Methods PAX8 depleted Fallopian tube secretory cells and ovarian cancer cells were generated using short interfering siRNA. Anoikis resistance, cell migration and adhesion properties of PAX8 silenced cells were analyzed by means of specific assays. Chromatin immunoprecipitation (ChIP) was carried out using a PAX8 polyclonal antibody to demonstrate that PAX8 is able to bind to the 5′-flanking region of the ITGB3 gene positively regulating its expression. Results Here, we report that RNAi silencing of PAX8 sensitizes non-adherent cancer cells to anoikis and affects their tumorigenic properties. We show that PAX8 plays a critical role in migration and adhesion of both Fallopian tube secretory epithelial cells and ovarian cancer cells. Inhibition of PAX8 gene expression reduces the ability of ovarian cancer cells to migrate and adhere to the ECM and specifically to fibronectin and/or collagen substrates. Moreover, loss of PAX8 strongly reduces ITGB3 expression and consequently the correct expression of the αvβ3 heterodimer on the plasma membrane. Conclusions Our results demonstrate that PAX8 modulates the interaction of tumor cells with the extracellular matrix (ECM). Notably, we also highlight a novel pathway downstream this transcription factor. Overall, PAX8 could be a potential therapeutic target for high-grade serous carcinoma.

2018 ◽  
Vol 433 ◽  
pp. 221-231 ◽  
Author(s):  
Subbulakshmi Karthikeyan ◽  
Angela Russo ◽  
Matthew Dean ◽  
Daniel D. Lantvit ◽  
Michael Endsley ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4795
Author(s):  
Xueyu Wang ◽  
Mingo M. H. Yung ◽  
Rakesh Sharma ◽  
Fushun Chen ◽  
Ying-Tung Poon ◽  
...  

Peritoneal metastases are frequently found in high-grade serous carcinoma (HGSOC) patients and are commonly associated with a poor prognosis. The tumor microenvironment (TME) is a complex milieu that plays a critical role in epigenetic alterations driving tumor development and metastatic progression. However, the impact of epigenetic alterations on metastatic ovarian cancer cells in the harsh peritoneal microenvironment remains incompletely understood. Here, we identified that miR-33b is frequently silenced by promoter hypermethylation in HGSOC cells derived from metastatic omental tumor tissues. Enforced expression of miR-33b abrogates the oncogenic properties of ovarian cancer cells cocultured in omental conditioned medium (OCM), which mimics the ascites microenvironment, and in vivo tumor growth. Of note, restoration of miR-33b inhibited OCM-upregulated de novo lipogenesis and fatty acid β-oxidation in ovarian cancer cells, indicating that miR-33b may play a novel tumor suppressor role in the lipid-mediated oncogenic properties of metastatic ovarian cancer cells found in the omentum. Mechanistic studies demonstrated that miR-33b directly targets transforming growth factor beta-activated kinase 1 (TAK1), thereby suppressing the activities of fatty acid synthase (FASN) and carnitine palmitoyltransferase 1A (CPT1A) in modulating lipid metabolic activities and simultaneously inhibiting the phosphorylation of NF-κB signaling to govern the oncogenic behaviors of ovarian cancer cells. Thus, our data suggest that a lipid-rich microenvironment may cause epigenetic silencing of miR-33b, which negatively modulates ovarian cancer peritoneal metastases, at least in part, by suppressing TAK1/FASN/CPT1A/NF-κB signaling.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1711
Author(s):  
Michelle Bilbao ◽  
Chelsea Katz ◽  
Stephanie L. Kass ◽  
Devon Smith ◽  
Krystal Hunter ◽  
...  

Recurrent high-grade serous ovarian cancer (HGSC) is clinically very challenging and prematurely shortens patients’ lives. Recurrent ovarian cancer is characterized by high tumor heterogeneity; therefore, it is susceptible to epigenetic therapy in classic 2D tissue culture and rodent models. Unfortunately, this success has not translated well into clinical trials. Utilizing a 3D spheroid model over a period of weeks, we were able to compare the efficacy of classic chemotherapy and epigenetic therapy on recurrent ovarian cancer cells. Unexpectedly, in our model, a single dose of paclitaxel alone caused the exponential growth of recurrent high-grade serous epithelial ovarian cancer over a period of weeks. In contrast, this effect is not only opposite under treatment with panobinostat, but panobinostat reverses the repopulation of cancer cells following paclitaxel treatment. In our model, we also demonstrate differences in the drug-treatment sensitivity of classic chemotherapy and epigenetic therapy. Moreover, 3D-derived ovarian cancer cells demonstrate induced proliferation, migration, invasion, cancer colony formation and chemoresistance properties after just a single exposure to classic chemotherapy. To the best of our knowledge, this is the first evidence demonstrating a critical contrast between short and prolonged post-treatment outcomes following classic chemotherapy and epigenetic therapy in recurrent high-grade serous ovarian cancer in 3D culture.


2021 ◽  
Author(s):  
Cassie Liu ◽  
Catalina Muñoz-Trujillo ◽  
John A. Katzenellenbogen ◽  
Benita S. Katzenellenbogen ◽  
Adam R. Karpf

2014 ◽  
Vol 2 (4) ◽  
pp. 247-259

Semaphorins are a large family of genes involved in the development and morphogenesis of the nervous system. SEMA5A has been reported as a bi-functional molecule, acting as both oncogene and tumor suppressor in different types of cancer. High expression levels of SEMA5A and its receptor, Plexin-B3, were associated with aggressiveness in pancreatic and prostate cancers. Our previous study in ovarian cancer metastasis indicates that FAK knock-down can suppress ovarian cancer cells migration and invasion. We hypothesized that SEMA5A expression promotes ovarian cancer invasion and metastasis. We investigated the expression of SEMA5A in patients with metastatic ovarian cancer (n = 43), localized tumor (n = 37) and normal ovarian tissue (n = 12) from non-malignant diseases as control with different histopathological characteristics. For Silencing of SEMA5A in vitro, we treated human ovarian cancer cells (OVCAR-3, A2780/CP70) with miR-27a and miR-27b. We observed significantly higher expression of SEMA5A protein (P= 0.001) in metastatic ovarian cancer tissue associated with poor overall survival outcomes compared to localized ovarian cancer and control. In vitro silencing of SEMA5A reduced migration and invasion of ovarian cancer cell. Our data offer opportunities for the therapeutic modulation and biomarker of metastatic ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document