scholarly journals Circular RNA circ_0006168 enhances Taxol resistance in esophageal squamous cell carcinoma by regulating miR-194-5p/JMJD1C axis

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fanyong Qu ◽  
Lina Wang ◽  
Caiyan Wang ◽  
Lingxia Yu ◽  
Kaikai Zhao ◽  
...  

Abstract Background Chemoresistance is one of the major obstacles for cancer therapy in the clinic. Circular RNAs (circRNAs) are involved in the pathogenesis of esophageal squamous cell carcinoma (ESCC) and chemoresistance. This study aimed to explore the role and molecular mechanism of circ_0006168 in Taxol resistance of ESCC. Methods The expression levels of circ_0006168, microRNA-194-5p (miR-194-5p) and jumonji domain containing 1C (JMJD1C) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. The half-inhibition concentration (IC50) value of Taxol was evaluated by Cell Counting Kit-8 (CCK-8) assay. Cell proliferation was evaluated by CCK-8 and colony formation assays. Cell migration and invasion were detected by transwell assay. Cell apoptosis was determined by flow cytometry. The interaction between miR-194-5p and circ_0006168 or JMJD1C was predicted by bioinformatics analysis (Circinteractome and TargetScan) and verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) and RNA pull-down assays. The mice xenograft model was established to investigate the roles of circ_0006168 in vivo. Results Circ_0006168 and JMJD1C were upregulated and miR-194-5p was downregulated in ESCC tissues, ESCC cells, and Taxol-resistant cells. Functionally, knockdown of circ_0006168 or JMJD1C increased Taxol sensitivity of ESCC in vitro via inhibiting cell proliferation, migration and invasion, and promoting apoptosis. Moreover, circ_0006168 could directly bind to miR-194-5p and JMJD1C was verified as a direct target of miR-194-5p. Mechanically, circ_0006168 was a sponge of miR-194-5p to regulate JMJD1C expression in ESCC cells. Furthermore, JMJD1C overexpression reversed the promotive effect of circ_0006168 knockdown on Taxol sensitivity. Besides, circ_0006168 silence suppressed tumor growth in vivo. Conclusion Circ_0006168 facilitated Taxol resistance in ESCC by regulating miR-194-5p/JMJD1C axis, providing a promising therapeutic target for ESCC chemotherapy.

2021 ◽  
Author(s):  
Yi He ◽  
Bin Li ◽  
Yang Yang ◽  
Rong Hua ◽  
Zhigang Li

Abstract Background: Long non-coding RNAs (lncRNAs) are reported act as important regulators in various cancers. LncRNA JPX was identified as an oncogenic regulator in lung cancer. However, the function of lncRNA JPX in the progression of esophageal squamous cell carcinoma (ESCC) remains unclear. Methods: The effects and molecular mechanism of JPX on the progression of ESCC were investigated using fluorescence in situ hybridization (FISH), cell proliferation, quantitative real-time PCR (qRT-PCR), western blot, dual luciferase, cell cycle, 5-Ethynyl-2′-Deoxyuridine (EdU) incorporation, transwell, RNA pull-down, tube formation and RNA immunoprecipitation (RIP) assays. Results: In the present study, we found JPX was highly expressed in tissues of ESCC patients and different ESCC cell lines. Functional assays demonstrated that JPX promoted ESCC cell proliferation, migration and invasion in vitro and tumor growth in vivo. Moreover, we found JPX promoted ESCC mobility in vitro. Mechanistically, the results showed that JPX functions as a sponge of miR-516b-5p, which targets an oncogene vascular endothelial growth factor A (VEGFA) in ESCC cells. Interactions between miR-516b-5p and JPX or VEGFA were confirmed by luciferase reporter assays. Furthermore, inhibition of JPX significantly attenuated the cell growth and mobility ability of ESCC cells in vitro. In addition, miR-516b-5p overexpression abrogated JPX enhanced proliferation, migration, invasion, and angiogenesis of ESCC cells. Conclusions: Our study demonstrated that JPX played an important role in promoting ESCC progression via the miR-516b-5p/VEGFA pathway and might serve as a promising novel therapeutic target for ESCC patients.


2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Chunxiu Liu ◽  
Zhenjun Lu ◽  
Hui Liu ◽  
Shenfa Zhuang ◽  
Ping Guo

Abstract Objective: X inactivate-specific transcript (XIST) is an attractive long noncoding RNA (lncRNA) functioning as an indicator of various human tumors, including laryngeal squamous cell carcinoma (LSCC). The present study was conducted to explore a novel regulatory network of lncRNA XIST in LSCC cells. Materials and methods: Quantitative real-time polymerase chain reaction (QRT-PCR) was used to detect the expression levels of XIST, miR-125b-5p and TRIB2 in LSCC cells and tissues. Cell proliferation, apoptosis, migration and invasion were detected by Cell Counting Kit-8 (CCK-8), flow cytometry and Transwell assays, separately. The relationship among XIST, miR-125b-5p and tribbles homolog 2 (TRIB2) was predicted by starBase v2.0 or TargetScan and confirmed by Dual-luciferase reporter assay. The TRIB2 protein expression was quantified by Western blot assay. Murine xenograft model was utilized to validate the role of XIST in vivo. Results: XIST was notably up-regulated in LSCC tissues and cells, and the high level of XIST was associated with the low survival rate of LSCC patients. XIST knockdown markedly repressed cell proliferation, migration and invasion and promoted the apoptosis of LSCC cells and the effects were antagonized by loss of miR-125b-5p. MiR-125b-5p was a target of XIST in LSCC cells, and it could bind to TRIB2 as well. Moreover, XIST-loss-induced down-regulation of TRIB2 could be significantly reversed by miR-125b-5p knockdown. XIST promoted the growth of LSCC tumor in vivo. Conclusion: LncRNA XIST promoted the malignance of LSCC cells partly through competitively binding to miR-125b-5p, which in turn increased TRIB2 expression.


2019 ◽  
Vol 19 (8) ◽  
pp. 1021-1028 ◽  
Author(s):  
Fanghua Qiu ◽  
Lifang Liu ◽  
Yu Lin ◽  
Zetian Yang ◽  
Feng Qiu

Background:Esophageal squamous cell carcinoma (ESCC), the most prevalent histologic subtype of esophageal cancer, is an aggressive malignancy with poor prognosis and a high incidence in the East. Corilagin, an active component present in Phyllanthus niruri L., has been shown to suppress tumor growth in various cancers. However, the effects of corilagin on ESCC and the mechanisms for its tumor suppressive function remain unknown.Methods:Cell proliferation was measured by Cell Counting Kit-8 assay and colony formation assays. Annexin V/PI double-staining was performed to assess cell apoptosis. Immunofluorescence staining and western blotting were used to evaluate the protein expression. A xenograft mice model was used to assess the in vivo antitumor effects of corilagin alone or in combination with cisplatin.Results:We for the first time showed that corilagin was effectively able to inhibit ESCC cell proliferation and induce cell apoptosis. Additionally, our results validated its antitumor effects in vivo using a xenograft mouse model. Mechanistically, we found that corilagin caused significant DNA damage in ESCC cells. We found that corilagin could significantly attenuate the expression of the E3 ubiquitin ligase RING finger protein 8 (RNF8) through ubiquitin-proteasome pathway, leading to the inability of DNA damage repair response and eventually causing cell apoptosis. Furthermore, we also showed that corilagin substantially enhanced the antitumor effects of chemotherapy drug cisplatin both in vitro and in vivo.Conclusion:Our results not only provided novel and previously unrecognized evidences for corilagin-induced tumor suppression through inducing DNA damage and targeting RNF8 in ESCC, but also highlighted that corilagin might serve as an adjunctive treatment to conventional chemotherapeutic drugs in ESCC patients.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Zhou ◽  
Shuhong Zhang ◽  
Zhonghan Min ◽  
Zhongwei Yu ◽  
Huaiwei Zhang ◽  
...  

Abstract Background Circular RNAs (circRNAs) are implicated in the development of oral squamous cell carcinoma (OSCC). The aim of current research is to elucidate the role and mechanism of circ_0011946 in the functional behaviors of OSCC cells. Methods Circ_0011946, microRNA (miR)-216a-5p, B cell lymphoma-2-like 2 protein (BCL2L2) abundances were exposed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) or western blot. Cell proliferation, migration, invasion and apoptosis were detected by MTT, colony formation assay, transwell, wound-healing and flow cytometry assays, respectively. Target correlation was tested by dual-luciferase reporter and RNA pull-down assays. An in vivo xenograft experiment was employed to investigate the function of circ_0011946 on tumor growth in vivo. Results Circ_0011946 and BCL2L2 levels were increased, while miR-216a-5p level was decreased in OSCC tissues and cells. Circ_0011946 knockdown impeded proliferation, migration, and invasion, but promoted apoptosis in OSCC cells. Circ_0011946 functioned as a sponge for miR-216a-5p, and BCL2L2 was targeted by miR-216a-5p. Besides, miR-216a-5p or BCL2L2 knockdown partly attenuated the inhibitory influences of circ_0011946 silence or miR-216a-5p overexpression on OSCC cell progression. Furthermore, circ_0011946 post-transcriptionally regulated BCL2L2 through sponging miR-216a-5p. Moreover, circ_0011946 knockdown constrained OSCC tumor growth in vivo. Conclusion Circ_0011946 silence repressed OSCC cell proliferation, migration, and invasion, but promoted apoptosis through the regulation of the miR-216a-5p/BCL2L2 axis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaodan Wu ◽  
Yihui Fan ◽  
Yupeng Liu ◽  
Biao Shen ◽  
Haimin Lu ◽  
...  

Long non-coding RNAs (lncRNAs) have been shown to play important roles in human cancers, including esophageal squamous cell carcinoma (ESCC). In the current study, we identified CCAT2 as a relevant lncRNA and investigated its role in the progression of ESCC. RT-qPCR was adopted to detect CCAT2 expression in collected clinical samples, ESCC cell lines, and a normal cell line. We tested the correlation between CCAT2 expression and the prognosis of ESCC. RT-qPCR or immunoblotting was adopted to detect the expression of relevant factors in ESCC tissues or cells. Cell proliferation, apoptosis, migration, and invasion were examined by colony formation assay, flow cytometry, scratch assay, and Transwell assay, respectively, while subcutaneous tumorigenesis in nude mice was adopted to examine the role of CCAT2 in tumorigenesis of ESCC cells in vivo. Bioinformatics analysis, dual luciferase reporter assay, and RIP were conducted for the target relationship profiling. Me-RIP was adopted to detect m6A modification level of TK1 in ESCC tissues or cells. Upregulated CCAT2, IGF2BP2, and TK1 expression and inhibited miR-200b expression were observed in ESCC cells and tissues. CCAT2 bound to miR-200b and reduced its expression, leading to upregulated IGF2BP2 expression. IGF2BP2 improved TK1 mRNA stability to enhance its expression by recognizing its m6A modification. CCAT2 promoted the migration and invasion of ESCC cells in vitro, and tumorigenesis in vivo by upregulating TK1 expression, while overexpression of miR-200b reversed these effects of CCAT2. Overall, this study suggests that CCAT2 competitively binds to miR-200b to alleviate its inhibitory effects on IGF2BP2 expression, resulting in elevated TK1 expression, and an ensuing promotion of the development of ESCC.


2020 ◽  
Author(s):  
Yixuan Yang ◽  
Bing Zhu ◽  
Zhaofeng Ning ◽  
Xiaodong Wang ◽  
Zhaoxia Li ◽  
...  

Abstract Background: Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy with a high incidence and poor prognosis. The document of circular RNAs (circRNAs) is frequently associated with cancer development. This study intended to explore the functional mechanism of circ_DLG1 in ESCC.Methods: The expression of circ_DLG1, miR-338-3p and Mitogen-Activated Protein Kinase Kinase Kinase 9 (MAP3K9) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell cycle, proliferation, migration and invasion were performed for functional analysis using flow cytometry, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and transwell assay, respectively. The protein levels of MAP3K9, p38, phosphor p38 (p-p38), ERK1/2, phosphor ERK1/2 (p-ERK1/2) were detected by western blot. Bioinformatics tool for target prediction used the online tool starBase. Dual-luciferase reporter assay was performed to verify the target relationship. The animal experiments were performed to ascertain the role of circ_DLG1 in vivo.Results: The expression of circ_DLG1 was elevated in ESCC tissues, plasma and cells. Circ_DLG1 knockdown inhibited cell cycle, proliferation, migration and invasion. MAP3K9 was highly expressed in ESCC tissues and cells, and its overexpression rescued the effects of circ_DLG1 knockdown. MiR-338-3p was a link between circ_DLG1 and MAP3K9, and circ_DLG1 regulated the expression of MAP3K9 by targeting miR-338-3p. The MAPK/ERK pathway was involved in the circ_DLG1/miR-338-3p/MAP3K9 regulatory axis. Circ_DLG1 knockdown blocked the tumor growth in vivo by regulating miR-338-3p and MAP3K9.Conclusion: Circ_DLG1 contributed to the malignant progression of ESCC by mediating the miR-338-3p/MAP3K9 axis via activating the MAPK/ERK signaling pathway. This paper provided a novel action mode of circ_DLG1 in ESCC.


Author(s):  
Zhirong Li ◽  
Xuebo Qin ◽  
Wei Bian ◽  
Yishuai Li ◽  
Baoen Shan ◽  
...  

Abstract Background In recent years, long non-coding RNAs (lncRNAs) are of great importance in development of different types of tumors, while the function of lncRNA ZFAS1 is rarely discussed in esophageal squamous cell carcinoma (ESCC). Therefore, we performed this study to explore the expression of exosomal lncRNA ZFAS1 and its molecular mechanism on ESCC progression. Methods Expression of ZFAS1 and miR-124 in ESCC tissues was detected. LncRNA ZFAS1 was silenced to detect its function in the biological functions of ESCC cells. A stable donor and recipient culture model was established. Eca109 cells transfected with overexpressed and low expressed ZFAS1 plasmid and miR-124 inhibitor labeled by Cy3 were the donor cells, and then co-cultured with recipient cells to observe the transmission of Cy3-ZFAS1 between donor cells and recipient cells. The changes of cell proliferation, apoptosis, invasion, and migration in recipient cells were detected. The in vivo experiment was conducted for verifying the in vitro results. Results LncRNA ZFAS1 was upregulated and miR-124 was down-regulated in ESCC tissues. Silencing of ZFAS1 contributed to suppressed proliferation, migration, invasion and tumor growth in vitro and induced apoptosis of ESCC cells. LncRNA ZFAS1 was considered to be a competing endogenous RNA to regulate miR-124, thereby elevating STAT3 expression. Exosomes shuttled ZFAS1 stimulated proliferation, migration and invasion of ESCC cells and restricted their apoptosis with increased STAT3 and declined miR-124. Furthermore, in vivo experiment suggested that elevated ZFAS1-exo promoted tumor growth in nude mice. Conclusion This study highlights that exosomal ZFAS1 promotes the proliferation, migration and invasion of ESCC cells and inhibits their apoptosis by upregulating STAT3 and downregulating miR-124, thereby resulting in the development of tumorigenesis of ESCC.


2018 ◽  
Vol 13 (1) ◽  
pp. 582-588
Author(s):  
Ying-Cai Hong ◽  
Zheng Wang ◽  
Bin Peng ◽  
Li-Gang Xia ◽  
Lie-Wen Lin ◽  
...  

AbstractPrevious studies have suggested that Bcl2-associated athanogene 2 (BAG2) serves as a crucial regulator for tumorigenesis in multiple tumors. However, little is known about the effect of BAG2 on esophageal squamous cell carcinoma (ESCC). This study focused on investigating whether BAG2 functions as a cancer-promoting gene in ESCC. In this work, gene expression data and clinical information from the NCBI Gene Expression Omnibus (GEO), Oncomine and The Cancer Genome Atlas (TCGA) were collected and analyzed. Expression of BAG2 in ESCC was determined using quantitative reverse transcription polymerase chain reaction (qRT-PCR). BAG2 was knocked down using small interference RNA (si-RNA) approach. Cell proliferation, migration and invasion were assessed by Cell Counting Kit-8 (CCK-8) and transwell assays. Molecular mechanism was detected by western blotting assay. The expression of BAG2 both in ESCC tissues and cells was upregulated and overexpression was associated with worsened prognosis. BAG2 silencing inhibited ESCC cell proliferation, migration and invasion, which was regulated by the phosphatidylinositol-3-kinase (PI3K)/ protein kinase B (AKT) signaling pathway. These results reveal contributions of BAG2 as a predictor and potential therapeutic target in ESCC.


Author(s):  
Yanhua Wang ◽  
Shengjian Tang ◽  
Jianping Lv

The incidence of cutaneous squamous cell carcinoma (cSCC) has been increasing in recent years. Meanwhile, microRNAs (miRNAs) have been found to play vital roles in various cancers, including cSCC. This study aimed to investigate the expression of microRNA-573 (miR-573) in cSCC, its relationship with long non-coding RNA PICSAR and analyze its biological role. The relationship between PICSAR and miR-573 was confirmed by dual-luciferase reporter assay and Pearson’s correlation coefficient analysis. The levels of PICSAR and miR-573 were measured using quantitative Real-Time PCR. Cell Counting Kit-8 assay was used to evaluate the cSCC cell proliferation ability. The migration and invasion abilities of cSCC cells were evaluated by Transwell assay. PICSAR expression was increased and miR-573 was decreased in tumor tissues and cSCC cell lines. PICSAR and miR-573 can bind directly, and miR-573 expression was downregulated by PICSAR in cSCC. Overexpression of miR-573 significantly inhibited the proliferation, migration and invasion abilities of A431 and SCC13 cells. Additionally, miR-573 overexpression reversed the promotion effects of PICSAR overexpression on cSCC cell proliferation, migration and invasion abilities. In conclusion, our findings indicated that miR-573 expression was decreased in tumor tissues and cSCC cells and was downregulated by PICSAR in cSCC. Additionally, miR-573 overexpression inhibited cSCC cell proliferation, migration and invasion, and reversed the promotion effects of PICSAR overexpression on cSCC cell biological functions. Thus, miR-573 might function as a tumor suppressor and might be involved in the regulatory effects of PICSAR on tumorigenesis in cSCC.


2020 ◽  
Author(s):  
Cuijuan Qian ◽  
Zhurong Xu ◽  
Luyan Chen ◽  
Yichao Wang ◽  
Jun Yao

Abstract Background: Dysregulation of lncRNAs is implicated in esophageal squamous cell carcinoma (ESCC) progression; However, the precise function of lncRNA FAM83H-AS1 in ESCC remains unknown. Methods: FAM83H-AS1, miR-4684-5p and ZBTB38 mRNA expressions were detected via qRT-PCR. ZBTB38, GLUT1 and LDH-A protein expressions were tested via Western blot. Cell proliferation, migration and invasion were evaluated via CCK-8 and transwell assay, respectively. A nude mouse xenograft model was used to investigate the role of FAM83H-AS1 in xenograft ESCC growth. The metabolic shift in ESCC cells was examined via glycolysis analysis. The interaction between FAM83H-AS1, miR-4684-5p and ZBTB38 was analyzed via computational algorithms, RNA pull-down, RIP and dual luciferase reporter assay. Results: We found that FAM83H-AS1 was upmodulated in ESCC cell lines. FAM83H-AS1 knockdown hampered ESCC cell proliferation, migration, invasion and aerobic glycolysis, while FAM83H-AS1 overexpression demonstrated the opposite effects. FAM83H-AS1 knockdown also delayed the tumor growth in vivo. Moreover, FAM83H-AS1 interacted with miR-4684-5p/ZBTB38 axis in ESCC cells. ZBTB38 overexpression or miR-4684-5p inhibition partially reversed the inhibitory effect of FAM83H-AS1 knockdown on cell migration, invasion and aerobic glycolysis in ESCC cells. Conclusion: Our present results indicate FAM83H-AS1 accelerated aerobic glycolysis and tumorigenesis of ESCC by sponging miR-4684-5p and triggering the expression of ZBTB38, providing new insights into mechanism of ESCC progression and therapeutic strategy.


Sign in / Sign up

Export Citation Format

Share Document