scholarly journals NCK1-AS1 promotes the progression of melanoma by accelerating cell proliferation and migration via targeting miR-526b-5p/ADAM15 axis

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Quan Lin ◽  
Yan Jia ◽  
Duo Zhang ◽  
Hongjuan Jin

Abstract Background Long non-coding RNAs (lncRNAs) are vital regulators of gene expression and cellular processes in multiple cancers, including melanoma. Nevertheless, the function of lncRNA NCK1-antisense 1 (NCK1-AS1) in melanoma remains unknown. Methods RT-qPCR was used to analyze the expression of NCK1-AS1, microRNA-526b-5p (miR-526b-5p) and ADAM metallopeptidase domain 15 (ADAM15). Cell proliferation was determined by CCK-8, colony formation and EdU assays. Cell migration was assessed by transwell migration and wound healing assays. Mechanism experiments including luciferase reporter, RIP and RNA pull down assays were conducted to demonstrate the interactions between RNAs. Xenograft model was established to verify the function of NCK1-AS1 and miR-526b-5p in melanoma in vivo. Results NCK1-AS1 was overexpressed in melanoma cell lines and NCK1-AS1 knockdown hampers the proliferation and migration of melanoma cells. Besides, miR-526b-5p binds to NCK1-AS1 in melanoma and ADAM15 was validated as its downstream target. Further, the inhibitory effects of NCK1-AS1 knockdown on cell proliferation and migration in melanoma were reversed by the depletion of miR-526b-5p and further counteracted by ADAM15 knockdown. The growth of melanoma tumors was hindered by the down-regulation of NCK1-AS1 or up-regulation of miR-526b-5p. Conclusion NCK1-AS1 facilitates cell proliferation and migration in melanoma via targeting miR-526b-5p/ADAM15 axis.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiong Ma ◽  
Chunxia Zhou ◽  
Xuejun Chen

Abstract Background Hedgehog (Hh) signaling pathway, which is essential for cell proliferation and differentiation, is noted to be aberrantly activated in tumor from increasing studies in recent years. MicroRNAs (miRNAs) as an important non-coding RNA in cells have been proven to possess a regulatory role specific to the Hh signaling pathway. Here, in vitro and in vivo cellular/molecular experiments were adopted to clarify the regulatory mechanism linking miR-636 to the Hh signaling pathway in ovarian cancer (OVC). Methods Protein–protein interaction analysis was performed to identify the hub gene in the Hh pathway. TargetScan database was used to predict the potential upstream regulators for Gli2. qRT-PCR was performed to test the expression of miR-636, while Western blot was conducted to detect the expression of proteins related to the Hh pathway and epithelial-mesenchymal transition (EMT). For cell functional experiments, HO-8910PM OVC cell line was used. MTT assay and wound healing assay were used to measure the effect of miR-636 on cell proliferation and migration. Flow cytometry was carried out to examine the effect of miR-636 on cell cycle, and Western blot was used to identify the change in expression of Hh and EMT-related proteins. Dual-luciferase reporter gene assay was implemented to detect the targeting relationship between miR-636 and Gli2. Xenotransplantation models were established for in vivo examination. Results Gli2 was identified as the hub gene of the Hh pathway and it was validated to be regulated by miR-636 based on the data from TargetScan and GEO databases. In vitro experiments discovered that miR-636 was significantly lowly expressed in OVC cell lines, and overexpressing miR-636 significantly inhibited HO-8910PM cell proliferation, migration and induced cell cycle arrest in G0/G1 phase, while the inhibition of miR-636 caused opposite results. Dual-luciferase reporter gene assay revealed that Gli2 was the target gene of miR-636 in OVC. Besides, overexpressed miR-636 decreased protein expression of Gli2, and affected the expression of proteins related to the Hh signaling pathway and EMT. Rescue experiments verified that overexpression of Gli2 reversed the inhibitory effect of miR-636 on HO-8910PM cell proliferation and migration, and attenuated the blocking effect of miR-636 on cell cycle. The xenotransplantation experiment suggested that miR-636 inhibited cell growth of OVC by decreasing Gli2 expression. Besides, overexpressing Gli2 potentiated the EMT process of OVC cells via decreasing E-cadherin protein expression and increasing Vimentin protein expression, and it reversed the inhibitory effect of miR-636 on OVC cell proliferation in vivo. Conclusion miR-636 mediates the activation of the Hh pathway via binding to Gli2, thus inhibiting EMT, suppressing cell proliferation and migration of OVC. Trial registration: The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Human Ethics Committee of The Second Affiliated hospital of Zhejiang University School of Medicine (IR2019001235). Written informed consent was obtained from individual or guardian participants.


2021 ◽  
Vol 30 ◽  
pp. 096368972110255
Author(s):  
Qing Wang ◽  
Kai Li ◽  
Xiaoliang Li

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Increasing evidence suggests that long non-coding RNAs (lncRNAs) function in the tumorigenesis of NSCLC. LINC00958, a newly identified lncRNA, has been reported to be closely linked to tumorigenesis in several cancers. However, its specific role in NSCLC remains unclear. In this study, we determined the expression of LINC00958 in NSCLC by RT-qPCR analysis and evaluated cell proliferation and migration by CCK-8 and transwell assays, respectively. We established a xenograft tumor model to examine the effect of LINC00958 on tumor growth in vivo. Luciferase reporter assays were performed to determine the interaction between LINC00958 and miR-204-3p and the interaction between miR-204-3p and KIF2A. We found that LINC00958 was up-regulated in NSCLC tissues and cell lines. Down-regulation of LINC00958 inhibited cell proliferation and migration in vitro and suppressed tumor growth in vivo. Besides, miR-204-3p was identified as a target of LINC00958 and miR-204-3p inhibitor could reverse the inhibitory effect of LINC00958 knockdown on proliferation and migration of NSCLC cells. We also validated that KIF2A, a direct target of miR-204-3p, was responsible for the biological role of LINC00958. KIF2A antagonized the effect of miR-204-3p on NSCLC cell proliferation and migration and was regulated by LINC00958/miR-204-3p. Taken together, these data indicate that the LINC00958/miR-204-3p/KIF2A axis is critical for NSCLC progression, which might provide a potential therapeutic target of NSCLC.


2018 ◽  
Vol 48 (4) ◽  
pp. 1735-1746 ◽  
Author(s):  
Guanghui Zhu ◽  
Lianming Zhou ◽  
Haijun Liu ◽  
Yuanzhou Shan ◽  
Xueli Zhang

Background/Aims: MicroRNAs (miRNAs) have been shown to participate in the development of pancreatic ductal adenocarcinoma (PDAC) by modulating multiple cellular processes. Increased miR-224 expression enhances proliferation and metastasis in human cancers. This study aimed to investigate the role of miR-224 and its underlying mechanism of action in PDAC. Methods: BrdU, MTT, and cell migration assays were performed to determine cell proliferation, viability, and migration, respectively. The binding sites of miR-224 were identified using a luciferase reporter system, whereas protein expression of target genes was determined by immunoblotting and immunofluorescence analyses. A BALB/c nude mouse xenograft model was used to evaluate the role of miR-224 in vivo. Results: We demonstrated that miR-224 expression was enhanced in PDAC cells and tissues, and was related to migration and proliferation. Noticeably, miR-224 overexpression promoted the proliferation, migration, and metastasis of Panc1 cells, while miR-224 inhibition had the reverse effect on PDAC cells. Moreover, we found that thioredoxin-interacting protein (TXNIP) is a target of miR-224. The results also indicated that miR-224 inversely regulated TXNIP by binding directly to its 3′-untranslated region, which resulted in the activation of hypoxia-inducible factor 1α (HIF1α). Further, either TXNIP re-expression or HIF1α depletion abolished the effects of miR-224 on the proliferation and migration of PDAC cells in vitro and in vivo. Regarding the relationship of TXNIP and HIF1α, we found that TXNIP mediated the nuclear export of HIF1α and its degradation by forming a complex with HIF1α. Conclusion: The miR-224-TXNIP-HIF1α axis may be useful in developing novel therapies for PDAC.


2020 ◽  
Author(s):  
Yongbin Chi ◽  
Yan Wang ◽  
Dawei Zhou ◽  
Wanchao Liu ◽  
Ruodong Han ◽  
...  

Abstract Background: Circular RNAs (circRNAs) are a new family of abundant regulatory RNAs with roles in various types of cancer. While the hsa_circ_0046701 (circ-YES1) function in non-small cell lung cancer (NSCLC) is unclear. Methods: Circ-YES1 expression in normal pulmonary epithelial and NSCLC cells was examined. The small interfering RNA for circ-YES1 was prepared, cell proliferation and migration were assessed. Tumorigenesis in nude mice was assayed to validate the role of circ-YES1. Bioinformatics analyses and luciferase reporter assays were utilized to identify downstream targets of circ-YES1. Results: Compared to normal pulmonary epithelial cells, the circ-YES1 expression increased in NSCLC cells, and cell proliferation and migration were suppressed after circ-YES1 knockdown. Both high mobility group protein B1 (HMGB1) and miR-142-3p were found to be downstream targets of circ-YES1, and miR-142-3p inhibition and HMGB1 overexpression reversed the effects of circ-YES1 knockdown on cell proliferation and migration. Similarly, HMGB1 overexpression reversed the miR-142-3p overexpression effects on these two processes. The imaging experiment results revealed that circ-YES1 knockdown impeded tumor development and metastasis in a nude mouse xenograft model. Conclusion: Taken together, our results show that circ-YES1 promotes tumor development through the miR-142-3p–HMGB1 axis and support the development of circ-YES1 as a new therapeutic NSCLC target.


2020 ◽  
Author(s):  
Jiong Ma ◽  
Chunxia Zhou ◽  
Xuejun Chen

Abstract Objective: Ovarian cancer (OVC) is the fifth leading cause of cancer-related deaths in women and has a significant impact on physical and mental health of women. This study explores the molecular mechanism of miR-636 acting as a tumor suppressor in OVC in vitro and in vivo, and provides new insight into the treatment of OVC.Methods: Protein-protein interaction (PPI) analysis was performed to identify the hub gene in Hedgehog (Hh) pathway. TargetScan database was used to predict the upstream regulatory miRNAs of Gli2 to obtain the target miRNA. qRT-PCR was performed to test the expression of miR-636, while Western blot were conducted to detect the expression of Hh and EMT (epithelial-mesenchymal transition) related genes in OVC cell lines. MTT assay and wound healing assay were used to measure the effect of miR-636 on OVC cell proliferation and migration. Flow cytometry was carried out to examine the effect of miR-636 on cell cycle, and Western blot was used for identification of changes in expression of Hh and EMT related proteins. Dual-luciferase reporter gene assay was implemented to detect the targeted relationship between miR-636 and Gli2. The xenotransplantation model was used to detect the effect of miR-636 on OVC cell proliferation in vivo.Results: PPI interaction analysis found that Gli2 was the hub gene in Hh pathway. Based on TargetScan and GEO databases, Gli2 was found to be targeted regulated by the upstream miR-636. In vitro experiments discovered that miR-636 was significantly lowly expressed in OVC cell lines. Overexpressing miR-636 significantly inhibited HO-8910PM cell proliferation and migration abilities as well as induced cell cycle arrest in G0/G1 phase, while the inhibition of miR-636 promoted cell proliferation and migration abilities. Dual-luciferase reporter gene assay revealed that Gli2 was a target gene of miR-636. Besides, overexpressing miR-636 decreased protein expression of Gli2, while the inhibition of miR-636 increased protein expression of Gli2. Furthermore, the overexpression and inhibition of miR-636 both affected the expression of proteins related to Hh signaling pathway and EMT. Rescue experiments verified that overexpression of Gli2 reversed the inhibitory effect of miR-636 on HO-8910PM cell proliferation and migration abilities, and attenuated the blocking effect of miR-636 on HO-8910PM cell cycle. The xenotransplantation model suggested that miR-636 inhibited cell growth of OVC by decreasing Gli2 expression. Besides, overexpressing Gli2 potentiated the EMT process in OVC via decreasing E-cadherin protein expression and increasing Vimentin protein expression, and it reversed the inhibitory effect of miR-636 on OVC cell proliferation and migration abilities in vivo.Conclusion: miR-636 inhibits the Hh pathway activation via targeted binding to Gli2, thus inhibiting EMT, cell proliferation and migration in OVC.


2020 ◽  
Vol 20 (4) ◽  
pp. 288-294 ◽  
Author(s):  
Xinyu Tan ◽  
Duxun Tan ◽  
Haomiao Li ◽  
Ye Lin ◽  
Zhishen Wen ◽  
...  

Background: Recent studies have reported the vital roles of circular RNAs (circRNAs) in tumor progression. However, the function and expression profile of most circRNAs in osteosarcoma remain unclear. Methods: We examined the expression of circEPSTI1, a circRNA, in 50 paired adjacent normal tissues and osteosarcoma tissues by qRT-PCR. Then, we further explored the function of circEPSTI1 in osteosarcoma progression in vitro and in vivo. For example, cell proliferation and migration were examined. Some experiments were performed to explore the regulatory function of circEPSTI1 in miRNA and to investigate the potential role of circEPSTI1 in osteosarcoma. Results: We found that circEPSTI1 was significantly upregulated in osteosarcoma. Inhibition of circEPSTI1 suppressed the osteosarcoma cancer cell proliferation and migration in vitro. Dual luciferase reporter assay showed that circEPSTI1 and MCL1 (myeloid cell leukaemia 1) could bind to miR-892b and that MCL1 and circEPSTI1 were targets of miR-892b. Conclusion: Thus, the circEPSTI1-miR-892b-MCL1 axis affected osteosarcoma progression through the miRNA sponging mechanism. circEPSTI1 may serve as a target and biomarker for osteosarcoma treatment.


Author(s):  
Danyi Zhao ◽  
Huawei Chen ◽  
Bing Wang

The aim of this study was to assess the regulatory functions of SNHG11 in gastric cancer (GC) cell proliferation and migration. Dual-luciferase reporter assay and bioinformatics prediction [starBase (http://starbase.sysu.edu.cn/) and TargetScan (http://www.targetscan.org)] indicated that SNHG11 functions as a miR-184 sponge that can directly act on CDC25A. Compared with normal healthy gastric tissue and mucosal epithelial cell GES-1, SNHG11 and CDC25A expressions were dramatically increased in GC samples and cell lines, whereas microRNA-184 (miR-184) levels were reduced. SNHG11 silencing led to increased miR-184 and reduced CDC25A, whereas miR-184 downregulation recovered the expression of CDC25A. Additionally, miR-184 upregulation also played a role in regulating CDC25A ablation. Then, SNHG11 was silenced or miR-184 was upregulated in two GC cells (SGC-7901 and MKN-28). SNHG11 silencing and miR-184 upregulation caused a notable decrease in GC cell growth and proliferation and increased the apoptotic level of GC cells. Furthermore, SNHG11 silencing and miR-184 upregulation contributed to a decreased migration capacity of GC cells. Downregulated miR-184 expression in SNHG11 silenced GC cells showed that miR-184 inhibition reversed the effect of SNHG11 silencing on the growth, proliferation, apoptosis, and migration of GC cells. Moreover, in vivo xenograft experiments demonstrated that SNHG11 knockdown can inhibit tumor growth. These observations confirmed that SNHG11 acts as an oncogene, whereas miR-194 served as a tumor suppressor in GC development. SNHG11 may provide a new biomarker for GC diagnosis, treatment, and prognosis.


2020 ◽  
Author(s):  
Jiong Ma ◽  
Chunxia Zhou ◽  
Xuejun Chen

Abstract Background: Hedgehog (Hh) signaling pathway, which is essential for cell proliferation and differentiation, is noted to be aberrantly activated in tumor from increasing studies in recent years. MicroRNAs (miRNAs) as an important non-coding RNA in cells have been proven to possess a regulatory role specific to the Hh signaling pathway. Here, in vitro and in vivo cellular/molecular experiments were adopted to clarify the regulatory mechanism linking miR-636 to the Hh signaling pathway in ovarian cancer (OVC). Methods: Protein-protein interaction analysis was performed to identify the hub gene in the Hh pathway. TargetScan database was used to predict the potential upstream regulators for Gli2. qRT-PCR was performed to test the expression of miR-636, while Western blot was conducted to detect the expression of proteins related to the Hh pathway and epithelial-mesenchymal transition (EMT). For cell functional experiments, HO-8910PM OVC cell line was used. MTT assay and wound healing assay were used to measure the effect of miR-636 on cell proliferation and migration. Flow cytometry was carried out to examine the effect of miR-636 on cell cycle, and Western blot was used to identify the change in expression of Hh and EMT-related proteins. Dual-luciferase reporter gene assay was implemented to detect the targeting relationship between miR-636 and Gli2. Xenotransplantation models were established for in vivo examination.Results: Gli2 was identified as the hub gene of the Hh pathway and it was validated to be regulated by miR-636 based on the data from TargetScan and GEO databases. In vitro experiments discovered that miR-636 was significantly lowly expressed in OVC cell lines, and overexpressing miR-636 significantly inhibited HO-8910PM cell proliferation, migration and induced cell cycle arrest in G0/G1 phase, while the inhibition of miR-636 caused opposite results. Dual-luciferase reporter gene assay revealed that Gli2 was the target gene of miR-636 in OVC. Besides, overexpressed miR-636 decreased protein expression of Gli2, and affected the expression of proteins related to the Hh signaling pathway and EMT. Rescue experiments verified that overexpression of Gli2 reversed the inhibitory effect of miR-636 on HO-8910PM cell proliferation and migration, and attenuated the blocking effect of miR-636 on cell cycle. The xenotransplantation experiment suggested that miR-636 inhibited cell growth of OVC by decreasing Gli2 expression. Besides, overexpressing Gli2 potentiated the EMT process of OVC cells via decreasing E-cadherin protein expression and increasing Vimentin protein expression, and it reversed the inhibitory effect of miR-636 on OVC cell proliferation in vivo.Conclusion: miR-636 mediates the activation of the Hh pathway via binding to Gli2, thus inhibiting EMT, suppressing cell proliferation and migration of OVC.Trial registration: The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Human Ethics Committee of The Second Affiliated hospital of Zhejiang University School of Medicine (IR2019001235). Written informed consent was obtained from individual or guardian participants.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Tingting Zheng ◽  
Youxing Zhou ◽  
Xiaowei Xu ◽  
Xin Qi ◽  
Jiameng Liu ◽  
...  

Abstract Background The aberrant expression of E3 ubiquitin ligase Pellino-1 (PELI1) contributes to several human cancer development and progression. However, its expression patterns and functional importance in papillary thyroid cancer (PTC) remains unknown. Methods PELI1 expression profiles in PTC tissues were obtained and analyzed through the starBase v3.0 analysis. Real-time PCR, Immunohistochemical assays (IHC) and Western blot were used to investigate the mRNA and protein levels of PELI1 in PTC. The effects of PELI1 on PTC cell progression were evaluated through CCK-8, colony formation, Transwell, and Wound healing assay in vitro, and a PTC xenograft mouse model in vivo. The downstream target signal of PELI1 in PTC was analyzed by using Kyoto encyclopedia of genes and genomes (KEGG), and bioinformatics tools were used to identify potential miRNAs targeting PELI1. Human umbilical cord mesenchymal stem cells were modified by miR-30c-5p and the miR-30c-5p containing extracellular vesicles were collected (miR-30c-5p-EVs) by ultra-high-speed centrifugation method. Then, the effects of miR-30c-5p-EVs on PELI1 expression and PTC progression were evaluated both in vitro and in vivo. Results Both mRNA and protein expression of PELI1 were widely increased in PTC tissues, and overexpression of PELI1 was positively correlated with bigger tumor size and lymph node metastases. PELI1 promoted PTC cell proliferation and migration in vitro. While, PELI1 silencing significantly suppressed PTC growth in vivo accompanied with reduced expression of Ki-67 and matrix metallopeptidase 2 (MMP-2). Mechanistically, PI3K-AKT pathway was identified as the downstream target of PELI1, and mediated the functional influence of PELI1 in PTC cells. Moreover, we found that the expression of miR-30c-5p was inversely correlated with PELI1 in PTC samples and further confirmed that miR-30c-5p was a tumor-suppressive miRNA that directly targeted PELI1 to inhibit PTC cell proliferation and migration. Furthermore, we showed that miR-30c-5p-EVs could effectively downregulate PELI1 expression and suppress the PTC cell growth in vitro and in vivo. Conclusion This study not only supported the first evidence that miR-30c-5p loss-induced PELI1 accumulation facilitated cell proliferation and migration by activating the PI3K-AKT pathway in PTC but also provided novel insights into PTC therapy based on miR-carrying-hUCMSC-EVs.


2020 ◽  
Vol 98 (4) ◽  
pp. 466-473
Author(s):  
Wei Miao ◽  
Ning Li ◽  
Bin Gu ◽  
Guoqing Yi ◽  
Zheng Su ◽  
...  

Previous studies have reported that miRNAs are involved in the progression of glioma, and that miR-27b-3p is involved in a variety of cancers. However, whether miR-27b-3p has a role in glioma is still unknown. Here, we demonstrated that miR-27b-3p is downregulated in glioma, and this is associated with the development of glioma. Overexpression of miR-27b-3p in glioma cells inhibits cell proliferation and migration, and induces cell apoptosis, which suppresses the progression of glioma. Furthermore, in our study, overexpression of miR-27b-3p also inhibited the growth of xenografted glioma tumors in-vivo. Finally, we verified that Yes Associated Protein 1 (YAP1) is the downstream target of miR-27b-3p, and that miR-27b-3p controls the proliferation, migration, and apoptosis of glioma cells via regulating YAP1. Our study reveals a novel mechanism through which miR-27b-3p functions in the development of glioma, and thus provides a potential therapeutic target for the treatment of glioma.


Sign in / Sign up

Export Citation Format

Share Document