scholarly journals Civilian-military malaria outbreak response in Thailand: an example of multi-stakeholder engagement for malaria elimination

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Michelle E. Roh ◽  
Kanyarat Lausatianragit ◽  
Nithinart Chaitaveep ◽  
Krisada Jongsakul ◽  
Prayuth Sudathip ◽  
...  

Abstract Background In April 2017, the Thai Ministry of Public Health (MoPH) was alerted to a potential malaria outbreak among civilians and military personnel in Sisaket Province, a highly forested area bordering Cambodia. The objective of this study was to present findings from the joint civilian-military outbreak response. Methods A mixed-methods approach was used to assess risk factors among cases reported during the 2017 Sisaket malaria outbreak. Routine malaria surveillance data from January 2013 to March 2018 obtained from public and military medical reporting systems and key informant interviews (KIIs) (n = 72) were used to develop hypotheses about potential factors contributing to the outbreak. Joint civilian-military response activities included entomological surveys, mass screen and treat (MSAT) and vector control campaigns, and scale-up of the “1–3–7” reactive case detection approach among civilians alongside a pilot “1–3–7” study conducted by the Royal Thai Army (RTA). Results Between May–July 2017, the monthly number of MoPH-reported cases surpassed the epidemic threshold. Outbreak cases detected through the MoPH mainly consisted of Thai males (87%), working as rubber tappers (62%) or military/border police (15%), and Plasmodium vivax infections (73%). Compared to cases from the previous year (May–July 2016), outbreak cases were more likely to be rubber tappers (OR = 14.89 [95% CI: 5.79–38.29]; p < 0.001) and infected with P. vivax (OR=2.32 [1.27–4.22]; p = 0.006). Themes from KIIs were congruent with findings from routine surveillance data. Though limited risk factor information was available from military cases, findings from RTA’s “1–3–7” study indicated transmission was likely occurring outside military bases. Data from entomological surveys and MSAT campaigns support this hypothesis, as vectors were mostly exophagic and parasite prevalence from MSAT campaigns was very low (range: 0-0.7% by PCR/microscopy). Conclusions In 2017, an outbreak of mainly P. vivax occurred in Sisaket Province, affecting mainly military and rubber tappers. Vector control use was limited to the home/military barracks, indicating that additional interventions were needed during high-risk forest travel periods. Importantly, this outbreak catalyzed joint civilian-military collaborations and integration of the RTA into the national malaria elimination strategy (NMES). The Sisaket outbreak response serves as an example of how civilian and military public health systems can collaborate to advance national malaria elimination goals in Southeast Asia and beyond.

Author(s):  
Manju Rahi ◽  
Payal Das ◽  
Amit Sharma

Abstract Malaria surveillance is weak in high malaria burden countries. Surveillance is considered as one of the core interventions for malaria elimination. Impressive reductions in malaria-associated morbidity and mortality have been achieved across the globe, but sustained efforts need to be bolstered up to achieve malaria elimination in endemic countries like India. Poor surveillance data become a hindrance in assessing the progress achieved towards malaria elimination and in channelizing focused interventions to the hotspots. A major obstacle in strengthening India’s reporting systems is that the surveillance data are captured in a fragmented manner by multiple players, in silos, and is distributed across geographic regions. In addition, the data are not reported in near real-time. Furthermore, multiplicity of malaria data resources limits interoperability between them. Here, we deliberate on the acute need of updating India’s surveillance systems from the use of aggregated data to near real-time case-based surveillance. This will help in identifying the drivers of malaria transmission in any locale and therefore will facilitate formulation of appropriate interventional responses rapidly.


2021 ◽  
Vol 13 (4) ◽  
pp. 241
Author(s):  
Asmiani Asmiani ◽  
Yuanita Windusari ◽  
Hamzah Hasyim

Introduction: Until the end of 2020, West Bangka Regency was the only one that has not been certified for malaria elimination, so that it has an impact on achieving malaria elimination at the provincial level of Bangka Belitung. The West Bangka Regency's Electronic Malaria Surveillance Information System (E-SISMAL) showed eight indigenous malaria cases and no malaria vector control reports in 2020. The indigenous cases in West Bangka Regency have prevented malaria elimination. This study aims to evaluate malaria vector control to help eliminate malaria. Methods: This research was a qualitative evaluation study with selected informants. E-SISMAL in West Bangka Regency was studied and was analysed with Nvivo 12 Plus for Windows. The variables studied were context, input, process, and product. Focus groups, in-depth interviews, participatory observation, and photovoice were used to collect data. Results and Discussion: The area's topography, miner's behaviour, lack of manual vector reporting, and extensive ex-mining pits were discussed. Each evaluation variable was constrained by the process (supporting data collection and sub-variables) and product (data coverage of malaria vector control in E-SISMAL). Conclusion: It can be concluded that each evaluation variable constrains malaria vector control in West Bangka Regency.


2019 ◽  
Vol 13 (4) ◽  
pp. e0007322 ◽  
Author(s):  
Catherine A. Lippi ◽  
Anna M. Stewart-Ibarra ◽  
M. E. Franklin Bajaña Loor ◽  
Jose E. Dueñas Zambrano ◽  
Nelson A. Espinoza Lopez ◽  
...  

2021 ◽  
Author(s):  
Jaffer Okiring ◽  
Adrienne Epstein ◽  
Jane F. Namuganga ◽  
Emmanuel V. Kamya ◽  
Isaiah Nabende ◽  
...  

Abstract BackgroundRoutine malaria surveillance data in Africa primarily come from public health facilities reporting to national health management information systems. Although information on gender is routinely collected from patients presenting to these health facilities, stratification of malaria surveillance data by gender is rarely done. This study evaluated gender difference among patients diagnosed with laboratory confirmed malaria at public health facilities in Uganda.MethodsThis study utilized individual level patient data collected from January 2020 through April 2021 at 12 public health facilities in Uganda and cross-sectional surveys conducted in target areas around these facilities in April 2021. Associations between gender and the incidence of malaria and non-malarial visits captured at the health facilities from patients residing within the target areas were estimated using poisson regression models controlling for seasonality. Associations between gender and data on health seeking behaviour from the cross-sectional surveys were estimated using poisson regression models controlling for seasonality. ResultsOverall, incidence of malaria diagnosed per 1000 person years was 735 among females and 449 among males (IRR=1.72, 95% CI 1.68-1.77, p<0.001), with larger differences among those 15-39 years (IRR=2.46, 95% CI 2.34-2.58, p<0.001) and over 39 years (IRR=2.26, 95% CI 2.05-2.50, p<0.001) compared to those under 15 years (IRR=1.46, 95% CI 1.41-1.50, p<0.001). Female gender was also associated with a higher incidence of visits where malaria was not suspected (IRR=1.77, 95% CI 1.71-1.83, p<0.001), with a similar pattern across age strata. These associations were consistent across the 12 individual health centres. From the cross-sectional surveys, females were more likely than males to report fever in the past 2 weeks and seek care at the local health centre (7.5% vs 4.7%, p=0.001) with these associations significant for those 15-39 years (RR=2.49, 95% CI 1.17-5.31, p=0.018) and over 39 years (RR=2.56, 95% CI 1.00-6.54, p=0.049). ConclusionsFemales disproportionately contribute to the burden of malaria diagnosed at public health facilities in Uganda, especially once they reach childbearing age. Contributing factors included more frequent visits to these facilities independent of malaria and a higher reported risk of seeking care at these facilites for febrile illnesses.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Christopher Lourenço ◽  
Andrew J. Tatem ◽  
Peter M. Atkinson ◽  
Justin M. Cohen ◽  
Deepa Pindolia ◽  
...  

Abstract Background Surveillance is a core component of an effective system to support malaria elimination. Poor surveillance data will prevent countries from monitoring progress towards elimination and targeting interventions to the last remaining at-risk places. An evaluation of the performance of surveillance systems in 16 countries was conducted to identify key gaps which could be addressed to build effective systems for malaria elimination. Methods A standardized surveillance system landscaping was conducted between 2015 and 2017 in collaboration with governmental malaria programmes. Malaria surveillance guidelines from the World Health Organization and other technical bodies were used to identify the characteristics of an optimal surveillance system, against which systems of study countries were compared. Data collection was conducted through review of existing material and datasets, and interviews with key stakeholders, and the outcomes were summarized descriptively. Additionally, the cumulative fraction of incident infections reported through surveillance systems was estimated using surveillance data, government records, survey data, and other scientific sources. Results The landscaping identified common gaps across countries related to the lack of surveillance coverage in remote communities or in the private sector, the lack of adequate health information architecture to capture high quality case-based data, poor integration of data from other sources such as intervention information, poor visualization of generated information, and its lack of availability for making programmatic decisions. The median percentage of symptomatic cases captured by the surveillance systems in the 16 countries was estimated to be 37%, mostly driven by the lack of treatment-seeking in the public health sector (64%) or, in countries with large private sectors, the lack of integration of this sector within the surveillance system. Conclusions The landscaping analysis undertaken provides a clear framework through which to identify multiple gaps in current malaria surveillance systems. While perfect systems are not required to eliminate malaria, closing the gaps identified will allow countries to deploy resources more efficiently, track progress, and accelerate towards malaria elimination. Since the landscaping undertaken here, several countries have addressed some of the identified gaps by improving coverage of surveillance, integrating case data with other information, and strengthening visualization and use of data.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Eleanor Hutchinson ◽  
Susan Nayiga ◽  
Christine Nabirye ◽  
Lilian Taaka ◽  
Nelli Westercamp ◽  
...  

Abstract Background Demand for high-quality surveillance data for malaria, and other diseases, is greater than ever before. In Uganda, the primary source of malaria surveillance data is the Health Management Information System (HMIS). However, HMIS data may be incomplete, inaccurate or delayed. Collaborative improvement (CI) is a quality improvement intervention developed in high-income countries, which has been advocated for low-resource settings. In Kayunga, Uganda, a pilot study of CI was conducted in five public health centres, documenting a positive effect on the quality of HMIS and malaria surveillance data. A qualitative evaluation was conducted concurrently to investigate the mechanisms of effect and unintended consequences of the intervention, aiming to inform future implementation of CI. Methods The study intervention targeted health workers, including brief in-service training, plus CI with ‘plan-do-study-act’ (PDSA) cycles emphasizing self-reflection and group action, periodic learning sessions, and coaching from a CI mentor. Health workers collected data on standard HMIS out-patient registers. The qualitative evaluation (July 2015 to September 2016) included ethnographic observations at each health centre (over 12–14 weeks), in-depth interviews with health workers and stakeholders (n = 20), and focus group discussions with health workers (n = 6). Results The results suggest that the intervention did facilitate improvement in data quality, but through unexpected mechanisms. The CI intervention was implemented as planned, but the PDSA cycles were driven largely by the CI mentor, not the health workers. In this context, characterized by a rigid hierarchy within the health system of limited culture of self-reflection and inadequate training and supervision, CI became an effective form of high-quality training with frequent supervisory visits. Health workers appeared motivated to improve data collection habits by their loyalty to the CI mentor and the potential for economic benefits, rather than a desire for self-improvement. Conclusions CI is a promising method of quality improvement and could have a positive impact on malaria surveillance data. However, successful scale-up of CI in similar settings may require deployment of highly skilled mentors. Further research, focusing on the effectiveness of ‘real world’ mentors using robust study designs, will be required to determine whether CI can be translated effectively and sustainably to low-resource settings.


2019 ◽  
Author(s):  
Jaline Gerardin ◽  
Caitlin A. Bever ◽  
Daniel Bridenbecker ◽  
Thomas P. Eisele ◽  
Busiku Hamainza ◽  
...  

AbstractMaintaining zero transmission after malaria elimination will be a challenging task for many countries where malaria is still endemic. When local transmission potential is high, and importation of malaria infections continues from neighboring areas with ongoing transmission, malaria programs must develop robust surveillance and outbreak response systems. However, the requirements for such systems remain unclear. Using an agent-based, spatial microsimulation model of two areas in southern Zambia, where elimination efforts are currently underway, we compare the ability of various routine and reactive intervention packages to maintain near-zero prevalence in the face of continued importation. We find that in formerly moderate-transmission areas, high treatment rate of symptomatic malaria is sufficient to prevent reestablishment of malaria. Routine redistributions of insecticide-treated nets and reactive case detection with antimalarial drugs cannot completely compensate for inadequate case management. In formerly high-transmission areas, excellent case management and maintenance of good bednet coverage are both required to prevent resurgence, and outbreak response with antimalarial drugs or additional vector control is also necessary. These results begin to describe the essential criteria for operations that successfully prevent reestablishment of malaria post-elimination and highlight the need for both long-term, sustainable excellence in primary care and comprehensive surveillance that feeds into rapid and flexible outbreak response.Author SummaryThe global community is working toward malaria elimination, but some areas will eliminate before others. Eliminated areas will need to develop intervention programs capable of preventing imported infections from leading to reestablishment, a particular challenge when transmission was previously very high. Past experience has shown that stopping elimination interventions leads to massive resurgence, but it is unclear which interventions must be continued, which can be stopped to conserve resources, and what new interventions should be deployed. Using a simulation model built to capture malaria transmission and intervention history of two areas that recently made enormous progress toward elimination, we tested how well different intervention programs were able to prevent reestablishment of malaria. We found that treating as many symptomatic cases as possible was the single most important intervention to implement. In some contexts, this intervention alone was sufficient to prevent reestablishment. Other areas with historically higher transmission required maintaining vector control to contain mosquito populations. Localized outbreak response with antimalarial drugs or additional vector control was also necessary and predicted to be a highly efficient use of resources. These findings provide quantitative guidance for policy-makers considering how to stratify eliminated areas and plan new operational modes for the post-elimination era.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Nelli Westercamp ◽  
Sarah G. Staedke ◽  
Catherine Maiteki-Sebuguzi ◽  
Alex Ndyabakira ◽  
John Michael Okiring ◽  
...  

Abstract Background Surveillance data are essential for malaria control, but quality is often poor. The aim of the study was to evaluate the effectiveness of the novel combination of training plus an innovative quality improvement method—collaborative improvement (CI)—on the quality of malaria surveillance data in Uganda. Methods The intervention (training plus CI, or TCI), including brief in-service training and CI, was delivered in 5 health facilities (HFs) in Kayunga District from November 2015 to August 2016. HF teams monitored data quality, conducted plan-do-study-act cycles to test changes, attended periodic learning sessions, and received CI coaching. An independent evaluation was conducted to assess data completeness, accuracy, and timeliness. Using an interrupted time series design without a separate control group, data were abstracted from 156,707 outpatient department (OPD) records, laboratory registers, and aggregated monthly reports (MR) for 4 time periods: baseline—12 months, TCI scale-up—5 months; CI implementation—9 months; post-intervention—4 months. Monthly OPD register completeness was measured as the proportion of patient records with a malaria diagnosis with: (1) all data fields completed, and (2) all clinically-relevant fields completed. Accuracy was the relative difference between: (1) number of monthly malaria patients reported in OPD register versus MR, and (2) proportion of positive malaria tests reported in the laboratory register versus MR. Data were analysed with segmented linear regression modelling. Results Data completeness increased substantially following TCI. Compared to baseline, all-field completeness increased by 60.1%-points (95% confidence interval [CI]: 46.9–73.2%) at mid-point, and clinically-relevant completeness increased by 61.6%-points (95% CI: 56.6–66.7%). A relative − 57.4%-point (95% confidence interval: − 105.5, − 9.3%) change, indicating an improvement in accuracy of malaria test positivity reporting, but no effect on data accuracy for monthly malaria patients, were observed. Cost per additional malaria patient, for whom complete clinically-relevant data were recorded in the OPD register, was $3.53 (95% confidence interval: $3.03, $4.15). Conclusions TCI improved malaria surveillance completeness considerably, with limited impact on accuracy. Although these results are promising, the intervention’s effectiveness should be evaluated in more HFs, with longer follow-up, ideally in a randomized trial, before recommending CI for wide-scale use.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Harsh Rajvanshi ◽  
Praveen K. Bharti ◽  
Sekh Nisar ◽  
Himanshu Jayswar ◽  
Ashok K. Mishra ◽  
...  

Abstract Background Malaria Elimination Demonstration Project (MEDP) was started as a Public-Private-Partnership between the Indian Council of Medical Research through National Institute of Research in Tribal Health, Govt. of Madhya Pradesh and Foundation of Disease Elimination and Control of India, which is a Corporate Social Responsibility (CSR) initiative of the Sun Pharmaceutical Industries Limited. The project’s goal was to demonstrate that malaria can be eliminated from a high malaria endemic district along with prevention of re-establishment of malaria and to develop a model for malaria elimination using the lessons learned and knowledge acquired from the demonstration project. Methods The project employed tested protocols of robust surveillance, case management, vector control, and capacity building through continuous evaluation and training.  The model was developed using the learnings from the operational plan, surveillance and case management, monitoring and feedback, entomological investigations and vector control, IEC and capacity building, supply chain management, mobile application (SOCH), and independent reviews of MEDP. Results The MEDP has been operational since April 2017 with field operations from August 2017, and has observed: (1) reduction in indigenous cases of malaria by about 91 %; (2) need for training and capacity building of field staff for diagnosis and treatment of malaria; (3) need for improvement insecticide spraying and for distribution and usage of bed-nets; (4) need for robust surveillance system that captures and documents information on febrile cases, RDT positive individuals, and treatments provided; (5) need for effective supervision of field staff based on advance tour plan; (6) accountability and controls from the highest level to field workers; and (7) need for context-specific IEC. Conclusions Malaria elimination is a high-priority public health goal of the Indian Government with a committed deadline of 2030. In order to achieve this goal, built-in systems of accountability, ownership, effective management, operational, technical, and financial controls will be crucial components for malaria elimination in India. This manuscript presents a model for malaria elimination with district as an operational unit, which may be considered for malaria elimination in India and other countries with similar geography, topography, climate, endemicity, health infrastructure, and socio-economic characteristics.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Harsh Rajvanshi ◽  
Sekh Nisar ◽  
Praveen K. Bharti ◽  
Himanshu Jayswar ◽  
Ashok K. Mishra ◽  
...  

Abstract Background The Malaria Elimination Demonstration Project (MEDP) maintained a workforce of 235 Village Malaria Workers (VMWs) and 25 Malaria Field Coordinators (MFCs) to conduct disease surveillance, case management, IEC/BCC activities, capacity building, and monitoring of vector control activities in 1233 villages of Mandla, a high malaria endemic district of Madhya Pradesh in central India. Methods The induction training was conducted for 3 days on malaria diagnosis, treatment, prevention, and ethics. All trainings were assessed using a pre and post-training assessment questionnaire, with 70% marks as qualifying threshold. The questionnaire was divided into three thematic areas viz. general knowledge related to malaria (KAP), diagnosis and treatment (DXRX), and vector control (PVC). Results In 2017, the project trained 330 candidates, followed by 243 and 247 candidates in 2018 and 2019, respectively. 94.3% candidates passed after a single training session. Almost all (95%) candidates showed improvement in knowledge after the training with 4% showing no effect and 1% showing deterioration. Progressive improvement in scores of 2017 cohort was seen along with significant improvement in performance of candidates in 2019 after the introduction of systematic monitoring and ‘shadowing’ training exercises. Conclusion The project has successfully demonstrated the value of recruitment of workers from the study area, outcome of training, and performance evaluation of field staff in malaria elimination programme. This careful strategy of recruitment and training resulted in a work-force that was capable of independently conducting surveillance, case management, vector control, and Information Education Communication/Behaviour Change Communication (IEC/BCC). The learnings of this study, including the training modules and monitoring processes, can be used to train the health delivery staff for achieving national goal for malaria elimination by 2030. Similar training and monitoring programmes could also be used for other public health delivery programmes.


Sign in / Sign up

Export Citation Format

Share Document