scholarly journals First human case of catheter-related blood stream infection caused by Staphylococcus schleiferi subspecies coagulans: a case report and literature review

Author(s):  
Tatsuya Kobayashi ◽  
Mahoko Ikeda ◽  
Yuki Ohama ◽  
Koji Murono ◽  
Kazuhiko Ikeuchi ◽  
...  

Abstract Background Staphylococcus schleiferi is a gram-positive pathogenic coccus which causes canine skin and ear infections. Only four cases of human infection caused by Staphylococcus schleiferi subspecies coagulans have been reported. Herein, we present the first case of catheter-related bloodstream infection caused by S. schleiferi subspecies coagulans. Case presentation A 62-year-old Japanese man was admitted to our hospital for examination of sigmoid colon tumor. During hospitalization, he had fever, shaking chills, and swelling at the peripheral venous catheter insertion site. Two sets of blood cultures were positive for S. schleiferi subspecies coagulans which was confirmed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), 16S ribosomal RNA sequencing and the coagulase test. The patient was successfully treated without relapse. Conclusion To our knowledge, this is the first report of catheter-related bloodstream infection caused by S. schleiferi subspecies coagulans. S. schleiferi subsp. coagulans can be pathogenic in humans, and MALDI-TOF MS can contribute to accurate identification of S. schleiferi subspecies coagulans.

2019 ◽  
Vol 57 (11) ◽  
Author(s):  
Matthew C. Canver ◽  
Tsigereda Tekle ◽  
Samantha T. Compton ◽  
Katrina Callan ◽  
Eileen M. Burd ◽  
...  

ABSTRACT The Staphylococcus intermedius group (SIG) is a collection of coagulase-positive staphylococci consisting of four distinct species, namely, Staphylococcus cornubiensis, Staphylococcus delphini, Staphylococcus intermedius, and Staphylococcus pseudintermedius. SIG members are animal pathogens and rare causes of human infection. Accurate identification of S. pseudintermedius has important implications for interpretation of antimicrobial susceptibility testing data and may be important for other members of the group. Therefore, we sought to evaluate the performance of five commercially available identification platforms with 21 S. delphini isolates obtained from a variety of animal and geographic sources. Here, we show that automated biochemical platforms were unable to identify S. delphini to the species level, a function of its omission from their databases, but could identify isolates to the SIG level with various degrees of success. However, all automated systems misidentified at least one isolate as Staphylococcus aureus. One matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) system was able to identify S. delphini to the species level, suggesting that MALDI-TOF MS is the best option for distinguishing members of the SIG. With the exception of S. pseudintermedius, it is unclear if other SIG members should be routinely identified to the species level; however, as our understanding of their role in animal and human diseases increases, it may be necessary and important to do so.


2014 ◽  
Vol 7 (1) ◽  
Author(s):  
Constentin Dieme ◽  
Amina Yssouf ◽  
Anubis Vega-Rúa ◽  
Jean-Michel Berenger ◽  
Anna-Bella Failloux ◽  
...  

2019 ◽  
Vol 32 ◽  
pp. 100614
Author(s):  
R. Nasreddine ◽  
M.A. Argudin ◽  
M. Herpol ◽  
V.Y. Miendje Deyi ◽  
N. Dauby

2019 ◽  
Vol 57 (5) ◽  
Author(s):  
Lisa M. T. Lam ◽  
Philippe J. Dufresne ◽  
Jean Longtin ◽  
Jacqueline Sedman ◽  
Ashraf A. Ismail

ABSTRACT Invasive fungal infections by opportunistic yeasts have increased concomitantly with the growth of an immunocompromised patient population. Misidentification of yeasts can lead to inappropriate antifungal treatment and complications. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy is a promising method for rapid and accurate identification of microorganisms. ATR-FTIR spectroscopy is a standalone, inexpensive, reagent-free technique that provides results within minutes after initial culture. In this study, a comprehensive spectral reference database of 65 clinically relevant yeast species was constructed and tested prospectively on spectra recorded (from colonies taken from culture plates) for 318 routine yeasts isolated from various body fluids and specimens received from 38 microbiology laboratories over a 4-month period in our clinical laboratory. ATR-FTIR spectroscopy attained comparable identification performance with matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). In a preliminary validation of the ATR-FTIR method, correct identification rates of 100% and 95.6% at the genus and species levels, respectively, were achieved, with 3.5% unidentified and 0.9% misidentified. By expanding the number of spectra in the spectral reference database for species for which isolates could not be identified or had been misidentified, we were able to improve identification at the species level to 99.7%. Thus, ATR-FTIR spectroscopy provides a new standalone method that can rival MALDI-TOF MS for the accurate identification of a broad range of medically important yeasts. The simplicity of the ATR-FTIR spectroscopy workflow favors its use in clinical laboratories for timely and low-cost identification of life-threatening yeast strains for appropriate treatment.


Revista CERES ◽  
2019 ◽  
Vol 66 (1) ◽  
pp. 72-76
Author(s):  
Roberta Oliveira Viana ◽  
Karina Teixeira Magalhães-Guedes ◽  
Disney Ribeiro Dias ◽  
Rosane Freitas Schwan

ABSTRACT The aim of this study was to evaluate the use of Maldi-Tof MS biosensor in microbial assessment of Brazilian kefir grains. Maldi-Tof MS is a new methodology for the rapid diagnosis of microorganisms. A total of 358 microorganisms were isolated, 31 were yeasts and 327 were bacteria (divided into lactic and acetic bacteria). Microbial colonies were grown in Luria-Bertani agar medium and incubated at 35 °C for 18h and used in the identification of species by Maldi-Tof MS. The microbial population identified in Brazilian kefir grains was Lactobacillus paracasei, Saccharomyces cerevisiae, Lactobacillus plantarum, Acetobacter pasteurianus, and Acetobacter syzygii. This study demonstrated a rapid and accurate identification of the Brazilian kefir grains microorganisms using the Maldi-Tof MS biosensor. In conclusion, the Maldi-Tof MS technology can facilitate the microbiological control in a fermentation process using kefir grains as starter cultures.


Author(s):  
Tsuyoshi Watanabe ◽  
Yuki Hara ◽  
Yusuke Yoshimi ◽  
Waka Yokoyama-kokuryo ◽  
Yoshiro Fujita ◽  
...  

Abstract Background Correctly identifying anaerobic bloodstream infections (BSIs) is difficult. However, a new technique, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), enables more accurate identification and appropriate treatment. Anaerobic BSIs identified by MALDI-TOF MS were retrospectively analyzed to determine the clinical and microbiological features and patient outcomes based on the anaerobic genera or group. Methods Medical records of patients with anaerobic BSIs were used to conduct a single-center retrospective cohort study from January 2016 to December 2020 in Nagoya, Japan. Multivariate logistic regression analysis was performed to determine the independent risk factors for in-hospital mortality. Results Of the 215 patients with anaerobic BSIs, 31 had multiple anaerobic organisms in the blood culture, including 264 total episodes of anaerobic BSIs. Bacteroides spp. were isolated the most (n = 74), followed by gram-positive non-spore-forming bacilli (n = 57), Clostridium spp. (n = 52), gram-positive anaerobic cocci (GPAC) (n = 27), and gram-negative cocci (n = 7). The median patient age was 76 years; 56.7% were male. The most common focal infection site was intra-abdominal (36.7%). The in-hospital mortality caused by anaerobic BSIs was 21.3%, and was highest with Clostridium spp. (36.5%) and lowest with GPAC (3.7%). Age, solid tumors, and Clostridium spp. were independent risk factors for in-hospital mortality. Conclusions We identified current anaerobic BSI trends using MALDI-TOF MS and reported that mortality in patients with anaerobic BSIs patients was highest with Clostridium spp. infections.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2511 ◽  
Author(s):  
Christiana Jesumirhewe ◽  
Peter Oladejo Ogunlowo ◽  
Mitsan Olley ◽  
Burkhard Springer ◽  
Franz Allerberger ◽  
...  

BackgroundEnterobacteriaceae are ubiquitously present in nature and can be found in the intestinal tract of humans and animals as commensal flora. Multidrug-resistant Enterobacteriaceae are increasingly reported and are a threat to public health implicating a need for accurate identification of the isolates to species level. In developing countries, identification of bacteria basically depends on conventional methods: culture and phenotypic methods that hamper the accurate identification of bacteria. In this study, matrix-assisted desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) technique was compared to conventional identification techniques.Materials and MethodsIn total, 147 Enterobacteriaceae isolates were collected from March to May 2015 from three medical microbiology laboratories of hospitals in Edo state, Nigeria, after being tested according to the individual laboratories standard operating procedures. All isolates were stored at −20°C until tested centrally by MALDI-TOF MS.ResultsOne hundred and forty five (98.6%) isolates had a MALDI Biotyper best score > or =2.0, indicating a secure genus and probable species identification; and 2(1.36%) isolates had a best score <2.0 indicating probable genus identification. Isolates with best scores of > or =2.0 comprised nine genera and 10 species, respectively. A total of 57.2% and 33.1% of isolates identified had agreement between MALDI-TOF MS and conventional techniques for identification at genus and species level, respectively, when analyzing bacteria with MALDI Biotyper best scores > or =2.0.ConclusionThe results of our study show that the applied conventional identification techniques for Enterobacteriaceae in the investigated Nigerian hospitals are not very accurate. Use of state-of-the-art identification technologies for microorganisms is necessary to guarantee comparability of bacteriological results.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Paul O. Verhoeven ◽  
Cyrille H. Haddar ◽  
Josselin Rigaill ◽  
Nathalie Fonsale ◽  
Anne Carricajo ◽  
...  

Rapid bacterial identification of positive blood culture is important for adapting the antimicrobial therapy in patients with blood stream infection. The aim of this study was to evaluate the performance of the multiplex FilmArray Blood Culture Identification (BCID) assay by comparison to an in-house protocol based on MALDI-TOF MS identification of microcolonies after a 4-hour culture, for identifying on the same day the microorganisms present in positive blood culture bottles. One hundred and fifty-three positive bottles from 123 patients were tested prospectively by the 3 techniques of bacterial identification: 11 bottles yielding negative results by the 3 tests were considered false positive (7.2%). The reference MALDI-TOF MS technique identified 134 monomicrobial (87.6%) and 8 double infections (5.2%), which resulted in a total of 150 microorganisms. Globally, 137 (91.3%) of these 150 pathogens were correctly identified by the fully automated multiplex FilmArray BCID system at the species or genus level on day of growth detection, versus 117 (78.8%) by MALDI-TOF MS identification on nascent microcolonies after a 4-hour culture (P < 0.01). By combining the two approaches, 140 (93.5%) of the positive bottles were identified successfully at day 0. These results confirm the excellent sensitivity of the FilmArray BCID assay, notably in case of multimicrobial infection. Due to the limited number of targets included into the test, it must be coupled to another identification strategy, as that presented in this study relying on MALDI-TOF MS identification of microcolonies obtained after a very short culture period.


Sign in / Sign up

Export Citation Format

Share Document