scholarly journals Alpha linolenic acid in maternal diet halts the lipid disarray due to saturated fatty acids in the liver of mice offspring at weaning

2015 ◽  
Vol 14 (1) ◽  
Author(s):  
Limor Shomonov-Wagner ◽  
Amiram Raz ◽  
Alicia Leikin-Frenkel
2010 ◽  
Vol 55 (No. 2) ◽  
pp. 75-82 ◽  
Author(s):  
E. Straková ◽  
P. Suchý ◽  
I. Herzig ◽  
P. Hudečková ◽  
Š. Ivanko

This study was designed to verify the effect of diets containing lupin meal on the composition of fat in meat from fattened broiler chickens. It follows from the results that an increasing level of lupin meal (E1 and E2) resulted in a gradual decrease in the average level of saturated fatty acids (SFAs) in fat in breast and thigh muscles from experimental chickens as compared to the control group. This decrease was characterized by a significant (<i>P</i> ≤ 0.05) to highly significant (<i>P</i> ≤ 0.01) reduction in the level of palmitic acid, which is the most common fatty acid. Diets containing lupin meal showed an increase in monounsaturated fatty acids (MUFAs). Particularly oleic acid contributed significantly to an overall increase in MUFAs (<i>P</i> ≤ 0.01). Polyunsaturated fatty acids (PUFAs) from the n-6 group showed only a slight decrease in fat in meat from chickens in the experimental group. Linoleic acid as the most common PUFA found in the fat from chicken muscles showed a significantly lower level in breast muscles in the E2 group (<i>P</i> ≤ 0.05) as compared to the control and the E1 group. A similar trend was also observed for &gamma;-linolenic acid in fat from breast muscles. The level of arachidonic acid in fat from muscles in experimental groups also decreased. The levels of PUFAs n-3 in fat from chicken muscles were found to increase in experimental groups. Of all PUFAs n-3 examined in fat from breast and thigh muscles, &alpha;-linolenic acid was found at the highest levels. Its levels in fat from muscles varied with an increasing amount of lupin meal in a diet. However, a highly significant increase (<i>P</i> ≤ 0.01) was confirmed only in thigh muscles. A rise in PUFAs n-3 which is associated with the dietary supplementation of lupin meal is particularly beneficial as it affected the &Sigma; PUFAs n-3:&Sigma; PUFAs n-6 ratio, thereby enhancing the nutritional value of chicken meat with regard to human nutrition.


Author(s):  
Tatiana PANAITE ◽  
Mariana ROPOTA ◽  
Raluca TURCU ◽  
Margareta OLTEANU ◽  
Alexandru R. CORBU ◽  
...  

The objective of this work was to study the nutritional and bioactive composition of commercially available flaxseeds with the aim to develop new alternatives for their use as functional and nutraceutical food ingredient. The samples of flaxseed contained 20.86% protein, 31.16% fat, 29.07% crude fiber and 3.75% ash. Essential amino acids represented 34% of total protein. The amino acids profile showed that glutamic acid was the most abundant (3.87 g 100 g-1), followed by arginine (1.93 g 100 g-1) and aspartic acid (1.52 g 100 g-1). Fatty acids analysis indicated that alpha-linolenic acid represents the major fatty acid (54.51% of the total fatty acids). The ratio of unsaturated to saturated fatty acids was 8.67 while the n-3/n-6 PUFA ratio was 3.2. Total phenolics showed average contents of 295.92 mg GAE 100 g-1, of which flavonoids accounted for 25.85 mg QE 100 g-1. The results confirmed that, in addition to being one of the richest sources of alpha-linolenic acid, flaxseed is an essential source of high quality protein, soluble fiber and potent natural antioxidants.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Nurnadia Abd Aziz ◽  
Azrina Azlan ◽  
Amin Ismail ◽  
Suryati Mohd Alinafiah ◽  
Muhammad Rizal Razman

This study was conducted to quantitatively determine the fatty acid contents of 20 species of marine fish and four species of shellfish from Straits of Malacca. Most samples contained fairly high amounts of polyunsaturated fatty acids (PUFAs), especially alpha-linolenic acid (ALA, C18:3 n3), eicosapentaenoic acid (EPA, C20:5 n3), and docosahexaenoic acid (DHA, C22:6 n3). Longtail shad, yellowstripe scad, and moonfish contained significantly higher (P<0.05) amounts of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and alpha-linolenic acid (ALA), respectively. Meanwhile, fringescale sardinella, malabar red snapper, black pomfret, Japanese threadfin bream, giant seaperch, and sixbar grouper showed considerably high content (537.2–944.1 mg/100g wet sample) of desirable omega-3 fatty acids. The polyunsaturated-fatty-acids/saturated-fatty-acids (P/S) ratios for most samples were higher than that of Menhaden oil (P/S=0.58), a recommended PUFA supplement which may help to lower blood pressure. Yellowstripe scad (highest DHA,ω-3/ω-6=6.4,P/S=1.7), moonfish (highest ALA,ω-3/ω-6=1.9,P/S=1.0), and longtail shad (highest EPA,ω-3/ω-6=0.8,P/S=0.4) were the samples with an outstandingly desirable overall composition of fatty acids. Overall, the marine fish and shellfish from the area contained good composition of fatty acids which offer health benefits and may be used for nutraceutical purposes in the future.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lihong Ma ◽  
Xinqi Cheng ◽  
Chuan Wang ◽  
Xinyu Zhang ◽  
Fei Xue ◽  
...  

Abstract Background Cottonseed is one of the major sources of vegetable oil. Analysis of the dynamic changes of fatty acid components and the genes regulating the composition of fatty acids of cottonseed oil is of great significance for understanding the biological processes underlying biosynthesis of fatty acids and for genetic improving the oil nutritional qualities. Results In this study, we investigated the dynamic relationship of 13 fatty acid components at 12 developmental time points of cottonseed (Gossypium hirsutum L.) and generated cottonseed transcriptome of the 12 time points. At 5–15 day post anthesis (DPA), the contents of polyunsaturated linolenic acid (C18:3n-3) and saturated stearic acid (C18:0) were higher, while linoleic acid (C18:2n-6) was mainly synthesized after 15 DPA. Using 5 DPA as a reference, 15,647 non-redundant differentially expressed genes were identified in 10–60 DPA cottonseed. Co-expression gene network analysis identified six modules containing 3275 genes significantly associated with middle-late seed developmental stages and enriched with genes related to the linoleic acid metabolic pathway and α-linolenic acid metabolism. Genes (Gh_D03G0588 and Gh_A02G1788) encoding stearoyl-ACP desaturase were identified as hub genes and significantly up-regulated at 25 DPA. They seemed to play a decisive role in determining the ratio of saturated fatty acids to unsaturated fatty acids. FAD2 genes (Gh_A13G1850 and Gh_D13G2238) were highly expressed at 25–50 DPA, eventually leading to the high content of C18:2n-6 in cottonseed. The content of C18:3n-3 was significantly decreased from 5 DPA (7.44%) to 25 DPA (0.11%) and correlated with the expression characteristics of Gh_A09G0848 and Gh_D09G0870. Conclusions These results contribute to our understanding on the relationship between the accumulation pattern of fatty acid components and the expression characteristics of key genes involved in fatty acid biosynthesis during the entire period of cottonseed development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Goc ◽  
Aleksandra Niedzwiecki ◽  
Matthias Rath

AbstractThe strain SARS-CoV-2, newly emerged in late 2019, has been identified as the cause of COVID-19 and the pandemic declared by WHO in early 2020. Although lipids have been shown to possess antiviral efficacy, little is currently known about lipid compounds with anti-SARS-CoV-2 binding and entry properties. To address this issue, we screened, overall, 17 polyunsaturated fatty acids, monounsaturated fatty acids and saturated fatty acids, as wells as lipid-soluble vitamins. In performing target-based ligand screening utilizing the RBD-SARS-CoV-2 sequence, we observed that polyunsaturated fatty acids most effectively interfere with binding to hACE2, the receptor for SARS-CoV-2. Using a spike protein pseudo-virus, we also found that linolenic acid and eicosapentaenoic acid significantly block the entry of SARS-CoV-2. In addition, eicosapentaenoic acid showed higher efficacy than linolenic acid in reducing activity of TMPRSS2 and cathepsin L proteases, but neither of the fatty acids affected their expression at the protein level. Also, neither reduction of hACE2 activity nor binding to the hACE2 receptor upon treatment with these two fatty acids was observed. Although further in vivo experiments are warranted to validate the current findings, our study provides a new insight into the role of lipids as antiviral compounds against the SARS-CoV-2 strain.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1868
Author(s):  
Tuck Seng Cheng ◽  
Felix R. Day ◽  
John R. B. Perry ◽  
Jian’an Luan ◽  
Claudia Langenberg ◽  
...  

Dietary intakes of polyunsaturated, monounsaturated and saturated fatty acids (FAs) have been inconsistently associated with puberty timing. We examined longitudinal associations of prepubertal dietary and plasma phospholipid FAs with several puberty timing traits in boys and girls. In the Avon Longitudinal Study of Parents and Children, prepubertal fat intakes at 3–7.5 years and plasma phospholipid FAs at 7.5 years were measured. Timings of Tanner stage 2 genital or breast development and voice breaking or menarche from repeated reports at 8–17 years, and age at peak height velocity (PHV) from repeated height measurements at 5–20 years were estimated. In linear regression models with adjustment for maternal and infant characteristics, dietary substitution of polyunsaturated FAs for saturated FAs, and higher concentrations of dihomo-γ-linolenic acid (20:3n6) and palmitoleic acid (16:1n7) were associated with earlier timing of puberty traits in girls (n = 3872) but not boys (n = 3654). In Mendelian Randomization models, higher genetically predicted circulating dihomo-γ-linolenic acid was associated with earlier menarche in girls. Based on repeated dietary intake data, objectively measured FAs and genetic causal inference, these findings suggest that dietary and endogenous metabolic pathways that increase plasma dihomo-γ-linolenic acid, an intermediate metabolite of n-6 polyunsaturated FAs, may promote earlier puberty timing in girls.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 461
Author(s):  
Debora Melo van Lent ◽  
Sarah Egert ◽  
Steffen Wolfsgruber ◽  
Luca Kleineidam ◽  
Leonie Weinhold ◽  
...  

Background. Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) may have different effects on cognitive health due to their anti- or pro-inflammatory properties. Methods. We aimed to prospectively examine the relationships between n-3 and n-6 PUFA contents in serum phospholipids with incident all-cause dementia and Alzheimer’s disease dementia (AD). We included 1264 non-demented participants aged 84 ± 3 years from the German Study on Ageing, Cognition, and Dementia in Primary Care Patients (AgeCoDe) multicenter-cohort study. We investigated whether fatty acid concentrations in serum phospholipids, especially eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), alpha-linolenic acid (ALA), linoleic acid (LA), dihomo-γ-linolenic acid (DGLA), and arachidonic acid (AA), were associated with risk of incident all-cause dementia and AD. Results. During the follow-up window of seven years, 233 participants developed dementia. Higher concentrations of EPA were associated with a lower incidence of AD (hazard ratio (HR) 0.76 (95% CI 0.63; 0.93)). We also observed that higher concentrations of EPA were associated with a decreased risk for all-cause dementia (HR 0.76 (95% CI 0.61; 0.94)) and AD (HR 0.66 (95% CI 0.51; 0.85)) among apolipoprotein E ε4 (APOE ε4) non-carriers but not among APOE ε4 carriers. No other fatty acids were significantly associated with AD or dementia. Conclusions. Higher concentrations of EPA were associated with a lower risk of incident AD. This further supports a beneficial role of n-3 PUFAs for cognitive health in old age.


1998 ◽  
Vol 1998 ◽  
pp. 35-35 ◽  
Author(s):  
R.J. Dewhurst ◽  
P.J. King

Ruminant products have been criticised for the possible adverse effects of their saturated fatty acids on human health. Conversely, the omega-3 polyunsaturated fatty acids, notably those in fish oils, have been identified as beneficial components of the human diet. Earlier studies have shown that a small, but useful, amount of forage α-linolenic acid (C18:3), an omega-3 fatty acid, appears in ruminant products (Wood and Enser, 1996). The objective of the current work was to evaluate the range of α-linolenic acid concentrations in laboratory grass silages in order to assess the opportunities to modify ensiling techniques to increase the natural delivery of omega-3 fatty acid from grass silage to milk or meat.


Sign in / Sign up

Export Citation Format

Share Document