scholarly journals MiR-125 inhibited cervical cancer progression by regulating VEGF and PI3K/AKT signaling pathway

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Ke Fu ◽  
Ling Zhang ◽  
Rui Liu ◽  
Qi Shi ◽  
Xue Li ◽  
...  
2017 ◽  
Vol 50 (5) ◽  
pp. 1601-1611 ◽  
Author(s):  
Benjiang Qian ◽  
Yi Yao ◽  
Changming Liu ◽  
Jiabing Zhang ◽  
Huihong Chen ◽  
...  

Author(s):  
Junliang Guo ◽  
Tian Tang ◽  
Jinhong Li ◽  
Yihong Yang ◽  
Yi Quan ◽  
...  

The aim of current study was to explore the mechanism of miR-142-5p in cervical cancer through mediating the PIK3AP1/P13K/AKT axis. To this end, RT-qPCR and Western blot analysis results revealed that miR-142-5p was poorly expressed, whereas PIK3AP1 was highly expressed in cervical cancer tissues and cells. Furthermore, miR-142-5p was hypermethylated in cervical cancer, as reflected by MS-PCR and ChIP assessment of enrichment of DNMT1/DNMT3a/DNMT3b in the promoter region of miR-142-5p. A target binding relationship between miR-142-5p and PIK3AP1 was established, showing that miR-142-5p targeted and inhibited the expression of PIK3AP1. Loss- and gain- function assays were conducted to determine the roles of miR-142-5p and PIK3AP1 in cervical cancer cells. CCK-8, flow cytometry and Transwell assay results revealed that overexpression of miR-142-5p in cervical cancer cells downregulated PIK3AP1 and inhibited the P13K/AKT signaling pathway, leading to reduced proliferation, migration, and invasion capacity of cervical cancer cells, but enhanced apoptosis. Collectively, epigenetic regulation of miR-142-5p targeted PIK3AP1 to inactivate the P13K/AKT signaling pathway, thus suppressing development of cervical cancer, which presents new targets for the treatment of cervical cancer.


Author(s):  
Hairul-Islam Ibrahim ◽  
Mohammad Bani Ismail ◽  
Rebai Ben Ammar ◽  
Emad Ahmed

Chemo-resistance and metastatic disease development are the most common causes of breast cancer recurrence and death. Thidiazuron (TDZ) is a plant growth regulator, its biological role on human and animals has not been yet clarified. In the present study, we investigated the anticancer activity of this plant phytohormone on the drug resistant-triple negative breast cancer MDA-MB-231 cell line. Treatment of the breast cancer cells with TDZ (1-50 μM) caused more stressful environment and induced a significant increase in percentages of active caspases positive cells. In addition, TDZ treatment (5 and 10 μM) significantly attenuated the migration and the invasion activities of these highly metastatic cancer cells. Mechanistically, TDZ reducesd cancer progression and invasive activity through targeting miR-202-5p, which stimulatesd the expression of the phosphatase and tensin homolog (PTEN), the tumor suppressor that downregulates PI3K/AKT signaling pathway. In the meantime, TDZ treatment statistically upregulatesd the suppressor of breast cancer proliferation, miRNA-132 that is also implicated in dysregulating the TEN-AKT/the nuclear factor NFκB signaling pathway. Interestingly, our molecular docking analysis revealed potential non-covalent interaction between TDZ with AKT, PTEN and PI3K. These findings suggest that TDZ may suppresses breast cancer metastasis through targeting miRNA-132, miR-202-5p/PTEN and PI3K/AKT downstream molecules.


2018 ◽  
Vol 72 ◽  
pp. 107-116 ◽  
Author(s):  
Yan Zhang ◽  
Peisheng Chen ◽  
Wei Yin ◽  
Ye Ji ◽  
Qin Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document