scholarly journals Potential role of chimeric genes in pathway-related gene co-expression modules

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Piaopiao Li ◽  
Yingxia Li ◽  
Lei Ma

Abstract Background Gene fusion has epigenetic modification functions. The novel proteins encoded by gene fusion products play a role in cancer development. Therefore, a better understanding of the novel protein products may provide insights into the pathogenesis of tumors. However, the characteristics of chimeric genes are rarely studied. Here, we used weighted co-expression network analysis to investigate the biological roles and underlying mechanisms of chimeric genes. Methods Download the pig transcriptome data, we screened chimeric genes and parental genes from 688 sequences and 153 samples, predict their domains, and analyze their associations. We constructed a co-expression network of chimeric genes in pigs and conducted Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis on the generated modules using DAVID to identify key networks and modules related to chimeric genes. Results Our findings showed that most of the protein domains of chimeric genes were derived from fused pre-genes. Chimeric genes were enriched in modules involved in the negative regulation of cell proliferation and protein localization to centrosomes. In addition, the chimeric genes were related to the growth factor-β superfamily, which regulates cell growth and differentiation. Furthermore, in helper T cells, chimeric genes regulate the specific recognition of T cell receptors, implying that chimeric genes play a key role in the regulation pathway of T cells. Chimeric genes can produce new domains, and some chimeric genes are a key role involved in pathway-related function. Conclusions Most chimeric genes show binding activity. Domains of chimeric genes are derived from several combinations of parent genes. Chimeric genes play a key role in the regulation of several cellular pathways. Our findings may provide new directions to explore the roles of chimeric genes in tumors.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A198-A198
Author(s):  
Tingting Zhong ◽  
Xinghua Pang ◽  
Zhaoliang Huang ◽  
Na Chen ◽  
Xiaoping Jin ◽  
...  

BackgroundTIGIT is an inhibitory receptor mainly expressed on natural killer (NK) cells, CD8+ T cells, CD4+ T cells and Treg cells. TIGIT competes with CD226 for binding with CD155. In cancers, CD155 has been reported to up-regulate on tumor cells, and TIGIT was found to increase on TILs.1 Activation of TIGIT/CD155 pathway would mediate immunosuppression in tumor; while blockade of TIGIT promotes anti-tumor immune response.MethodsAK126 and AK113 are two humanized anti-human TIGIT monoclonal antibodies developed by Akesobio. Binding activity of AK126 and AK113 to human TIGIT, and competitive binding activity with CD155 and CD112, were performed by using ELISA, Fortebio, and FACS assays. Cross-reactivity with cynomolgus monkey TIGIT and epitope binning were also tested by ELISA assay. In-vitro assay to investigate the activity to promote IL-2 secretion was performed in mixed-culture of Jurkat-TIGIT cells and THP-1 cells.ResultsAK126 and AK113 could specifically bind to human TIGIT with comparative affinity and effectively blocked the binding of human CD155 and CD112 to human TIGIT. X-ray crystal structure of TIGIT and PVR revealed the C’-C’’ loop and FG loop regions of TIGIT are the main PVR interaction regions.2 The only amino acid residue differences in these regions between human and monkey TIGIT are 70C and 73D. AK126 binds to both human and monkey TIGIT, AK113 binds only to monkey TIGIT. This suggests that these residues are required for AK113 binding to human TIGIT, but not required for AK126. Interestingly, results from cell-based assays indicated that AK126 and AK113 showed significantly different activity to induce IL-2 secretion in mixed-culture of Jurkat-TIGIT cells and THP-1 cells (figure 1A and B), in which AK126 had a comparable capacity of activity to 22G2, a leading TIGIT mAb developed by another company, to induce IL-2 secretion, while, AK113 showed a significantly higher capacity than 22G2 and AK126.Abstract 184 Figure 1Anti-TIGIT Antibodies Rescues IL-2 Production in Vitro T-Cell Activity Assay in a dose dependent manner. Jurkat-TIGIT cells (Jurkat cells engineered to over-express human TIGIT) were co-cultured with THP-1 cells, and stimulated with plate-bound anti-CD3 mAb in the presence of TIGIT ligand CD155 (A) or CD112 (B) with anti-TIGIT antibodies. After incubated for 48h at 37° C and 5.0% CO2, IL-2 levels were assessed in culture supernatants by ELISA. Data shown as mean with SEM for n = 2.ConclusionsWe discovered two distinct types of TIGIT antibodies with differences in both epitope binding and functional activity. The mechanism of action and clinical significance of these antibodies require further investigation.ReferencesSolomon BL, Garrido-Laguna I. TIGIT: a novel immunotherapy target moving from bench to bedside. Cancer Immunol Immunother 2018;67:1659–1667.Stengel KF, Harden-Bowles K, Yu X, et al. Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc Natl Acad Sci USA 2012;109:5399–5404.


1997 ◽  
Vol 186 (7) ◽  
pp. 999-1014 ◽  
Author(s):  
Hideaki Ishikawa ◽  
Daniel Carrasco ◽  
Estefania Claudio ◽  
Rolf-Peter Ryseck ◽  
Rodrigo Bravo

The nfkb2 gene encodes the p100 precursor which produces the p52 protein after proteolytic cleavage of its COOH-terminal domain. Although the p52 product can act as an alternative subunit of NF-κB, the p100 precursor is believed to function as an inhibitor of Rel/NF-κB activity by cytoplasmic retention of Rel/NF-κB complexes, like other members of the IκB family. However, the physiological relevance of the p100 precursor as an IκB molecule has not been understood. To assess the role of the precursor in vivo, we generated, by gene targeting, mice lacking p100 but still containing a functional p52 protein. Mice with a homozygous deletion of the COOH-terminal ankyrin repeats of NF-κB2 (p100−/−) had marked gastric hyperplasia, resulting in early postnatal death. p100−/− animals also presented histopathological alterations of hematopoietic tissues, enlarged lymph nodes, increased lymphocyte proliferation in response to several stimuli, and enhanced cytokine production in activated T cells. Dramatic induction of nuclear κB–binding activity composed of p52-containing complexes was found in all tissues examined and also in stimulated lymphocytes. Thus, the p100 precursor is essential for the proper regulation of p52-containing Rel/NF-κB complexes in various cell types and its absence cannot be efficiently compensated for by other IκB proteins.


2016 ◽  
Vol 113 (5) ◽  
pp. 1333-1338 ◽  
Author(s):  
Kylie M. Quinn ◽  
Sophie G. Zaloumis ◽  
Tania Cukalac ◽  
Wan-Ting Kan ◽  
Xavier Y. X. Sng ◽  
...  

In advanced age, decreased CD8+ cytotoxic T-lymphocyte (CTL) responses to novel pathogens and cancer is paralleled by a decline in the number and function of naïve CTL precursors (CTLp). Although the age-related fall in CD8+ T-cell numbers is well established, neither the underlying mechanisms nor the extent of variation for different epitope specificities have been defined. Furthermore, naïve CD8+ T cells expressing high levels of CD44 accumulate with age, but it is unknown whether this accumulation reflects their preferential survival or an age-dependent driver of CD8+ T-cell proliferation. Here, we track the number and phenotype of four influenza A virus (IAV)-specific CTLp populations in naïve C57BL/6 (B6) mice during aging, and compare T-cell receptor (TCR) clonal diversity for the CD44hi and CD44lo subsets of one such population. We show differential onset of decline for several IAV-specific CD8+ T-cell populations with advanced age that parallel age-associated changes in the B6 immunodominance hierarchy, suggestive of distinct impacts of aging on different epitope-specific populations. Despite finding no evidence of clonal expansions in an aged, epitope-specific TCR repertoire, nonrandom alterations in TCR usage were observed, along with elevated CD5 and CD8 coreceptor expression. Collectively, these data demonstrate that naïve CD8+ T cells expressing markers of heightened self-recognition are selectively retained, but not clonally expanded, during aging.


Blood ◽  
2002 ◽  
Vol 100 (12) ◽  
pp. 4129-4138 ◽  
Author(s):  
Bertrand Arnulf ◽  
Aude Villemain ◽  
Christophe Nicot ◽  
Elodie Mordelet ◽  
Pierre Charneau ◽  
...  

Human T-cell leukemia virus I is the etiologic agent of adult T-cell leukemia (ATL), an aggressive T-cell malignancy. The viral oncoprotein Tax, through the activation of nuclear factorκB (NF-κB), CCAAT-enhancer binding protein (CREB), and activated protein-1 (AP-1) pathways, is a transcriptional regulator of critical genes for T-cell homeostasis. In ATL cells, activated AP-1 complexes induce the production of transforming growth factor β1 (TGF-β1). TGF-β1 is an inhibitor of T-cell proliferation and cytotoxicity. Here we show that, in contrast to normal peripheral T cells, ATL cells are resistant to TGF-β1–induced growth inhibition. The retroviral transduction of the Tax protein in peripheral T cells resulted in the loss of TGF-β1 sensitivity. Transient transfection of Tax in HepG2 cells specifically inhibited Smad/TGF-β1 signaling in a dose-dependent manner. In the presence of Tax transfection, increasing amounts of Smad3 restored TGF-β1 signaling. Tax mutants unable to activate NF-κB or CREB pathways were also able to repress Smad3 transcriptional activity. Next we have demonstrated that Tax inhibits TGF-β1 signaling by reducing the Smad3 DNA binding activity. However, Tax did not decrease the expression and the nuclear translocation of Smad3 nor did it interact physically with Smad3. Rather, Tax induced c-Jun N-terminal kinase (JNK) activity and c-Jun phosphorylation, leading to the formation of Smad3/c-Jun complexes. Whereas c-Jun alone abrogates Smad3 DNA binding, cotransfection of Tax and of a dominant-negative form of JNK or a c-Jun antisense-restored Smad3 DNA binding activity and TGF-β1 responsiveness. In ATL and in normal T cells transduced by Tax, c-Jun was constitutively phosphorylated. Thus, we describe a new function of Tax, as a repressor of TGF-β1 signaling through JNK/c-Jun constitutive activation, which may play a critical role in ATL leukemogenesis.


2003 ◽  
Vol 10 (3) ◽  
pp. 376-382 ◽  
Author(s):  
Patricia Méndez-Samperio ◽  
Hilda Ayala ◽  
Abraham Vázquez

ABSTRACT Interaction between CD40L (CD154) on activated T cells and its receptor CD40 on antigen-presenting cells has been reported to be important in the resolution of infection by mycobacteria. However, the mechanism(s) by which Mycobacterium bovis bacillus Calmette-Guérin (BCG) up-regulates membrane expression of CD40L molecules is poorly understood. This study was done to investigate the role of the nuclear factor κB (NF-κB) signaling pathway in the regulation of CD40L expression in human CD4+ T cells stimulated with BCG. Specific pharmacologic inhibition of the NF-κB pathway revealed that this signaling cascade was required in the regulation of CD40L expression on the surface of BCG-activated CD4+ T cells. These results were further supported by the fact that treatment of BCG-activated CD4+ T cells with these pharmacological inhibitors significantly down-regulated CD40L mRNA. In this study, inhibitor κBα (IκBα) and IκBβ protein production was not affected by the chemical protease inhibitors and, more importantly, BCG led to the rapid but transient induction of NF-κB activity. Our results also indicated that CD40L expression on BCG-activated CD4+ T cells resulted from transcriptional up-regulation of the CD40L gene by a mechanism which is independent of de novo protein synthesis. Interestingly, BCG-induced activation of NF-κB and the increased CD40L cell surface expression were blocked by the protein kinase C (PKC) inhibitors 1-[5-isoquinolinesulfonyl]-2-methylpiperazine and salicylate, both of which block phosphorylation of IκB. Moreover, rottlerin a Ca2+-independent PKC isoform inhibitor, significantly down-regulated CD40L mRNA in BCG-activated CD4+ T cells. These data strongly suggest that CD40L expression by BCG-activated CD4+ T cells is regulated via the PKC pathway and by NF-κB DNA binding activity.


1997 ◽  
Vol 17 (4) ◽  
pp. 2066-2075 ◽  
Author(s):  
E S Masuda ◽  
J Liu ◽  
R Imamura ◽  
S I Imai ◽  
K I Arai ◽  
...  

The nuclear factor of activated T cells (NFAT) regulates cytokine gene expression in T cells through cis-acting elements located in the promoters of several cytokine genes. NFATx1, which is preferentially expressed in the thymus and peripheral blood leukocytes, is one of four members of the NFAT family of transcription factors. We have performed domain analysis of NFATx1 by examining the effects of deletion mutations. We found that NFATx1 DNA binding activity and interaction with AP-1 polypeptides were dependent on its central Rel similarity region and that transcriptional activation was reduced by deletions of either its N-terminal domain or its C-terminal domain, suggesting the presence of intrinsic transcriptional activation motifs in both regions. We also identified a potent inhibitory sequence within its N-terminal domain. We show that the inactivation of the inhibition was dependent on the activity of calcineurin, a calcium-calmodulin-dependent phosphatase. We also show that calcineurin associated with the N-terminal domain of NFATx1 at multiple docking sites and caused a reduction of size, indicative of dephosphorylation, in NFATx1. We have mapped the inhibitory activity to less than 60 residues, containing motifs that are conserved in all NFAT proteins. Finally, we demonstrate that deletion in NFATx1 of the mapped 60 residues leads to its nuclear translocation independent of calcium signaling. Our results support the model proposing that the N-terminal domain confers calcium-signaling dependence on NFATx1 transactivation activity by regulating its intracellular localization through a protein module that associates with calcineurin and is a target of its phosphatase activity.


2018 ◽  
Vol 50 (6) ◽  
pp. 2390-2405 ◽  
Author(s):  
Shuping Wei ◽  
Jingjing Zhang ◽  
Biao Han ◽  
Jianxun Liu ◽  
Xiaohui Xiang ◽  
...  

Background/Aims: Phenotypic switching of vascular smooth muscle cells (VSMC) plays a vital role in the development of vascular diseases. All-trans retinoic acid (ATRA) is known to regulate VSMC phenotypes. However, the underlying mechanisms remain completely unknown. Here, we have investigated the probable roles and underlying mechanisms of the novel C2H2 zinc finger transcription factor ZFP580 on ATRA-induced VSMC differentiation. Methods: VSMCs were isolated, cultured, and identified. VSMCs were infected with an adenovirus encoding ZFP580 or Ad-siRNA to silence ZFP580. The expression levels of ZFP580, SMα-actin, SM22α, SMemb, RARα, RARβ, and RARγ were assayed by Q-PCR and western blot. A rat carotid artery injury model and morphometric analysis of intimal thickening were also used in this study. Results: ATRA caused a significant reduction of VSMC proliferation and migration in a doseand time-dependent manner. Moreover, it promoted VSMC differentiation by enhancing expression of differentiation markers and reducing expression of dedifferentiation markers. This ATRA activity was accompanied by up-regulation of ZFP580, with concomitant increases in RARα expression. In contrast, silencing of the RARα gene or inhibiting RARα with its antagonist Ro41-5253 abrogated the ATRA-induced ZFP580 expression. Furthermore, ATRA binding to RARα induced ZFP580 expression via the PI3K/Akt and ERK pathways. Adenovirusmediated overexpression of ZFP580 promoted VSMC differentiation by enhancing expression of SM22α and SMα-actin and reducing expression of SMemb. In contrast, silencing ZFP580 dramatically reduced the expression of differentiation markers and increased expression of dedifferentiation markers. The classic rat carotid artery balloon injury model demonstrated that ZFP580 inhibited proliferation and intimal hyperplasia in vivo. Conclusion: The novel zinc finger transcription factor ZFP580 facilitates ATRA-induced VSMC differentiation by the RARα-mediated PI3K/Akt and ERK signaling pathways. This might represent a novel mechanism of regulation of ZFP580 by ATRA and RARα, which is critical for understanding the biological functions of retinoids during VSMC phenotypic modulation.


Sign in / Sign up

Export Citation Format

Share Document