scholarly journals A Bayesian spatio-temporal analysis of mortality rates in Spain: application to the COVID-19 2020 outbreak

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Pedro Saavedra ◽  
Angelo Santana ◽  
Luis Bello ◽  
José-Miguel Pacheco ◽  
Esther Sanjuán

Abstract Background The number of deaths attributable to COVID-19 in Spain has been highly controversial since it is problematic to tell apart deaths having COVID as the main cause from those provoked by the aggravation by the viral infection of other underlying health problems. In addition, overburdening of health system led to an increase in mortality due to the scarcity of adequate medical care, at the same time confinement measures could have contributed to the decrease in mortality from certain causes. Our aim is to compare the number of deaths observed in 2020 with the projection for the same period obtained from a sequence of previous years. Thus, this computed mortality excess could be considered as the real impact of the COVID-19 on the mortality rates. Methods The population was split into four age groups, namely: (< 50; 50–64; 65–74; 75 and over). For each one, a projection of the death numbers for the year 2020, based on the interval 2008–2020, was estimated using a Bayesian spatio-temporal model. In each one, spatial, sex, and year effects were included. In addition, a specific effect of the year 2020 was added ("outbreak"). Finally, the excess deaths in year 2020 were estimated as the count of observed deaths minus those projected. Results The projected death number for 2020 was 426,970 people, the actual count being 499,104; thus, the total excess of deaths was 72,134. However, this increase was very unequally distributed over the Spanish regions. Conclusion Bayesian spatio-temporal models have proved to be a useful tool for estimating the impact of COVID-19 on mortality in Spain in 2020, making it possible to assess how the disease has affected different age groups accounting for effects of sex, spatial variation between regions and time trend over the last few years.

Author(s):  
Alessandro Marcon ◽  
Elena Schievano ◽  
Ugo Fedeli

Mortality from idiopathic pulmonary fibrosis (IPF) is increasing in most European countries, but there are no data for Italy. We analysed the registry data from a region in northeastern Italy to assess the trends in IPF-related mortality during 2008–2019, to compare results of underlying vs. multiple cause of death analyses, and to describe the impact of the COVID-19 epidemic in 2020. We identified IPF (ICD-10 code J84.1) among the causes of death registered in 557,932 certificates in the Veneto region. We assessed time trends in annual age-standardized mortality rates by gender and age (40–74, 75–84, and ≥85 years). IPF was the underlying cause of 1310 deaths in the 2251 certificates mentioning IPF. For all age groups combined, the age-standardized mortality rate from IPF identified as the underlying cause of death was close to the European median (males and females: 3.1 and 1.3 per 100,000/year, respectively). During 2008–2019, mortality rates increased in men aged ≥85 years (annual percent change of 6.5%, 95% CI: 2.0, 11.2%), but not among women or for the younger age groups. A 72% excess of IPF-related deaths was registered in March–April 2020 (mortality ratio 1.72, 95% CI: 1.29, 2.24). IPF mortality was increasing among older men in northeastern Italy. The burden of IPF was heavier than assessed by routine statistics, since less than two out of three IPF-related deaths were directly attributed to this condition. COVID-19 was accompanied by a remarkable increase in IPF-related mortality.


MATEMATIKA ◽  
2018 ◽  
Vol 34 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Suhartono Suhartono ◽  
Dedy Dwi Prastyo ◽  
Heri Kuswanto ◽  
Muhammad Hisyam Lee

Monthly data about oil production at several drilling wells is an example of spatio-temporal data. The aim of this research is to propose nonlinear spatio-temporal model, i.e. Feedforward Neural Network - Vector Autoregressive (FFNN-VAR) and FFNN - Generalized Space-Time Autoregressive (FFNN-GSTAR), and compare their forecast accuracy to linear spatio-temporal model, i.e. VAR and GSTAR. These spatio-temporal models are proposed and applied for forecasting monthly oil production data at three drilling wells in East Java, Indonesia. There are 60 observations that be divided to two parts, i.e. the first 50 observations for training data and the last 10 observations for testing data. The results show that FFNN-GSTAR(11) and FFNN-VAR(1) as nonlinear spatio-temporal models tend to give more accurate forecast than VAR(1) and GSTAR(11) as linear spatio-temporal models. Moreover, further research about nonlinear spatio-temporal models based on neural networks and GSTAR is needed for developing new hybrid models that could improve the forecast accuracy.


2012 ◽  
Vol 279 (1745) ◽  
pp. 4206-4214 ◽  
Author(s):  
M. Maas ◽  
D. F. Keet ◽  
V. P. M. G. Rutten ◽  
J. A. P. Heesterbeek ◽  
M. Nielen

Bovine tuberculosis (BTB), caused by Mycobacterium bovis , is a disease that was introduced relatively recently into the Kruger National Park (KNP) lion population. Feline immunodeficiency virus (FIV ple ) is thought to have been endemic in lions for a much longer time. In humans, co-infection between Mycobacterium tuberculosis and human immunodeficiency virus increases disease burden. If BTB were to reach high levels of prevalence in lions, and if similar worsening effects would exist between FIV ple and BTB as for their human equivalents, this could pose a lion conservation problem. We collected data on lions in KNP from 1993 to 2008 for spatio-temporal analysis of both FIV ple and BTB, and to assess whether a similar relationship between the two diseases exists in lions. We found that BTB prevalence in the south was higher than in the north (72 versus 19% over the total study period) and increased over time in the northern part of the KNP (0–41%). No significant spatio-temporal differences were seen for FIV ple in the study period, in agreement with the presumed endemic state of the infection. Both infections affected haematology and blood chemistry values, FIV ple in a more pronounced way than BTB. The effect of co-infection on these values, however, was always less than additive. Though a large proportion (31%) of the lions was co-infected with FIV ple and M. bovis , there was no evidence for a synergistic relation as in their human counterparts. Whether this results from different immunopathogeneses remains to be determined.


2018 ◽  
Vol 146 (16) ◽  
pp. 2059-2065 ◽  
Author(s):  
A. R. R. Freitas ◽  
P. M. Alarcón-Elbal ◽  
M. R. Donalisio

AbstractIn some chikungunya epidemics, deaths are not completely captured by traditional surveillance systems, which record case and death reports. We evaluated excess deaths associated with the 2014 chikungunya virus (CHIKV) epidemic in Guadeloupe and Martinique, Antilles. Population (784 097 inhabitants) and mortality data, estimated by sex and age, were accessed from the Institut National de la Statistique et des Études Économiques in France. Epidemiological data, cases, hospitalisations and deaths on CHIKV were obtained from the official epidemiological reports of the Cellule de Institut de Veille Sanitaire in France. Excess deaths were calculated as the difference between the expected and observed deaths for all age groups for each month in 2014 and 2015, considering the upper limit of 99% confidence interval. The Pearson correlation coefficient showed a strong correlation between monthly excess deaths and reported cases of chikungunya (R= 0.81,p< 0.005) and with a 1-month lag (R= 0.87,p< 0.001); and a strong correlation was also observed between monthly rates of hospitalisation for CHIKV and excess deaths with a delay of 1 month (R= 0.87,p< 0.0005). The peak of the epidemic occurred in the month with the highest mortality, returning to normal soon after the end of the CHIKV epidemic. There were excess deaths in almost all age groups, and excess mortality rate was higher among the elderly but was similar between male and female individuals. The overall mortality estimated in the current study (639 deaths) was about four times greater than that obtained through death declarations (160 deaths). Although the aetiological diagnosis of all deaths associated with CHIKV infection is not always possible, already well-known statistical tools can contribute to the evaluation of the impact of CHIKV on mortality and morbidity in the different age groups.


2021 ◽  
Author(s):  
Jaime Gaona ◽  
Pere Quintana-Seguí ◽  
Maria José Escorihuela

&lt;p&gt;Droughts in the Iberian Peninsula are a natural hazard of great relevance due to their recurrence, severity and impact on multiple environmental and socioeconomic aspects. The Ebro Basin, located in the NE of the Iberian Peninsula, is particularly vulnerable to drought with consequences on agriculture, urban water supply and hydropower. This study, performed within the Project HUMID (CGL2017-85687-R), aims at evaluating the influence of the climatic, land cover and soil characteristics on the interactions between rainfall, evapotranspiration and soil moisture anomalies which define the spatio-temporal drought patterns in the basin.&lt;/p&gt;&lt;p&gt;The onset, propagation and mitigation of droughts in the Iberian Peninsula is driven by anomalies of rainfall, evapotranspiration and soil moisture, which are related by feedback processes. To test the relative importance of such anomalies, we evaluate the contribution of climatic, land-cover and geologic heterogeneity on the definition of the spatio-temporal patterns of drought. We use the K&amp;#246;ppen-Geiger climatic classification to assess how the contrasting climatic types within the basin determine differences on drought behavior. Land-cover types that govern the partition between evaporation and transpiration are also of great interest to discern the influence of vegetation and crop types on the anomalies of evapotranspiration across the distinct regions of the basin (e.g. forested mountains vs. crop-dominated areas). The third physical characteristic whose effect on drought we investigate is the impact of soil properties on soil moisture anomalies.&lt;/p&gt;&lt;p&gt;The maps and time series used for the spatio-temporal analysis are based on drought indices calculated with high-resolution datasets from remote sensing (MOD16A2ET and SMOS1km) and the land-surface model SURFEX-ISBA. The Standardized Precipitation Index (SPI), the EvapoTranspiration Deficit Index (ETDI) and the Soil Moisture Deficit Index (SMDI) are the three indices chosen to characterize the anomalies of the corresponding rainfall (atmospheric), evapotranspiration (atmosphere-land interface) and soil moisture (land) anomalies (components of the water balance). The comparison of the correlations of the indices (with different time lags) between contrasting regions offers insights about the impact of climate, land-cover and soil properties in the dominance, the timing of the response and memory aspects of the interactions. The high spatial and temporal resolution of remote sensing and land-surface model data allows adopting time and spatial scales suitable to investigate the influence of these physical factors with detail beyond comparison with ground-based datasets.&lt;/p&gt;&lt;p&gt;The spatial and temporal analysis prove useful to investigate the physical factors of influence on the anomalies between rainfall, evapotranspiration and soil moisture. This approach facilitates the physical interpretation of the anomalies of drought indices aiming to improve the characterization of drought in heterogeneous semi-arid areas like the Ebro River Basin.&lt;/p&gt;


2019 ◽  
Vol 58 ◽  
pp. 145-152
Author(s):  
Ganesh Kumar Jimee ◽  
Kimiro Meguro ◽  
Amod Mani Dixit

Nepal, though covers small area of the earth, exposes complex geology with active tectonic processes, high peaks, sloppy terrain and climatic variation. Combination of such geo-physical and climatic conditions with existing poor socio-economic conditions, unplanned settlements, rapidly increasing population and low level of awareness has put the country in highest risk to multi-hazard events. Fires, floods, landslides and epidemics are the most frequent hazard events, which have cumulatively caused a significant loss of lives and property every year. However, due to diversity in physiographic, climatic and socio-economic conditions within the country, the type, frequency and degree of the impact of such events differs in different places. During the period of 46 years (1971-2016), an average of 2 events have been occurred causing 3 deaths/missing every day. Disaster events occurred most frequently during the months of April, July and August, while relatively lesser number of events have been reported during January, November and December. However, earthquakes have been reported in different months, regardless with the season. This paper is an effort to analyse the spatial distribution and temporal variation of disaster events in Nepal. Further it has drawn a trend of disasters occurrence in Nepal, which will help the decision makers and other stakeholders for formulating Disaster Risk Management (DRM) plan and policies on one hand and heighten citizens’ awareness of against disasters on the other.


Sign in / Sign up

Export Citation Format

Share Document