scholarly journals Profiling pro-neural to mesenchymal transition identifies a lncRNA signature in glioma

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Qingyu Liang ◽  
Gefei Guan ◽  
Xue Li ◽  
Chunmi Wei ◽  
Jianqi Wu ◽  
...  

Abstract Background Molecular classification has laid the framework for exploring glioma biology and treatment strategies. Pro-neural to mesenchymal transition (PMT) of glioma is known to be associated with aggressive phenotypes, unfavorable prognosis, and treatment resistance. Recent studies have highlighted that long non-coding RNAs (lncRNAs) are key mediators in cancer mesenchymal transition. However, the relationship between lncRNAs and PMT in glioma has not been systematically investigated. Methods Gene expression profiles from The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), GSE16011, and Rembrandt with available clinical and genomic information were used for analyses. Bioinformatics methods such as weighted gene co-expression network analysis (WGCNA), gene set enrichment analysis (GSEA), Cox analysis, and least absolute shrinkage and selection operator (LASSO) analysis were performed. Results According to PMT scores, we confirmed that PMT status was positively associated with risky behaviors and poor prognosis in glioma. The 149 PMT-related lncRNAs were identified by WGCNA analysis, among which 10 (LINC01057, TP73-AS1, AP000695.4, LINC01503, CRNDE, OSMR-AS1, SNHG18, AC145343.2, RP11-25K21.6, RP11-38L15.2) with significant prognostic value were further screened to construct a PMT-related lncRNA risk signature, which could divide cases into two groups with distinct prognoses. Multivariate Cox regression analyses indicated that the signature was an independent prognostic factor for high-grade glioma. High-risk cases were more likely to be classified as the mesenchymal subtype, which confers enhanced immunosuppressive status by recruiting macrophages, neutrophils, and regulatory T cells. Moreover, six lncRNAs of the signature could act as competing endogenous RNAs to promote PMT in glioblastoma. Conclusions We profiled PMT status in glioma and established a PMT-related 10-lncRNA signature for glioma that could independently predict glioma survival and trigger PMT, which enhanced immunosuppression.

2020 ◽  
Author(s):  
junbai fan ◽  
Dan Wu ◽  
Yi Ding

Abstract Background: Esophageal carcinoma (ESCA) is a malignant tumor with high invasiveness and mortality. Autophagy has multiple roles in the development of cancer; however, there are limited data on autophagy genes associated with long non-coding RNAs (lncRNAs) in ESCA. The purpose of this study was to screen potential diagnostic and prognostic molecules, and to identify gene co-expression networks associated with autophagy in ESCA. Methods: We downloaded transcriptome expression profiles from The Cancer Genome Atlas and autophagy-related gene data from the Human Autophagy Database, and analyzed the co-expression of mRNAs and lncRNAs. In addition, the diagnostic and prognostic value of autophagy-related lncRNAs was analyzed by multivariate Cox regression. Furthermore, Kyoto Encyclopedia of Genes and Genomes analysis was carried out for high-risk patients, and enriched pathways were analyzed by gene set enrichment analysis. Results: The results showed that genes of high-risk patients were enriched in protein export and spliceosome. Based on Cox stepwise regression and survival analysis, we identified seven autophagy-related lncRNAs with prognostic and diagnostic value, with the potential to be used as a combination to predict the prognosis of patients with ESCA. Finally, a co-expression network related to autophagy was constructed. Conclusion: These results suggest that autophagy-related lncRNAs and the spliceosome play important parts in the pathogenesis of ESCA. Our findings provide new insight into the molecular mechanism of ESCA and suggest a new method for improving its treatment.


Author(s):  
Dan Wu ◽  
Yi Ding ◽  
JunBai Fan

Background: Esophageal carcinoma (ESCA) is a malignant tumor with high invasiveness and mortality. Autophagy has multiple roles in the development of cancer; however, there are limited data on autophagy genes associated with long non-coding RNAs (lncRNAs) in ESCA. The purpose of this study was to screen potential diagnostic and prognostic molecules and to identify gene co-expression networks associated with autophagy in ESCA. Methods: We downloaded transcriptome expression profiles from The Cancer Genome Atlas and autophagy-related gene data from the Human Autophagy Database and analyzed the co-expression of mRNAs and lncRNAs. In addition, the diagnostic and prognostic value of autophagy-related lncRNAs was analyzed by multivariate Cox regression. Furthermore, Kyoto Encyclopedia of Genes and Genomes analysis was carried out for high-risk patients, and enriched pathways were analyzed by gene set enrichment analysis. Results: The results showed that genes of high-risk patients were enriched in protein export and spliceosome. Based on Cox stepwise regression and survival analysis, we identified seven autophagy-related lncRNAs with prognostic and diagnostic value, with the potential to be used as a combination to predict the prognosis of patients with ESCA. Finally, a co-expression network related to autophagy was constructed. Conclusion: These results suggest that autophagy-related lncRNAs and the spliceosome play important parts in the pathogenesis of ESCA. Our findings provide new insight into the molecular mechanism of ESCA and suggest a new method for improving its treatment.


2021 ◽  
Author(s):  
Jianqiao Yang ◽  
Liang Shang ◽  
Leping Li ◽  
Zixiao Wang ◽  
Kangdi Dong ◽  
...  

Abstract Background: Gastric cancer (GC) is a common malignant tumour of the digestive tract. the prognosis of GC patients is still not optimistic. Apoptosis-related genes (ARGs) plays an important role in the development, invasion, metastasis and drug resistance of GC. Therefore, assessing the interaction between ARGs and the prognosis of GC patients may help identify specific biomarkers.Methods: Differentially expressed genes (DEGs) were identified by integrating gene expression profiling analyses from The Cancer Genome Atlas (TCGA) GC cohort and Gene Set Enrichment Analysis (GSEA) Database. Then, a risk score model was built based on Kaplan-Meier (K-M), least absolute shrinkage and selector operation (LASSO), and multivariate Cox regression analyses. Another cohort (GSE84426) was used for external validation. By combining risk scores with clinical variables, a nomogram was constructed to predict the prognosis of GC patients. Results: We screened 39 DEGS and established a three-gene signature(CAV1、F2、LUM) based on 161 ARGs. In addition, three-gene signature was identified as an independent factor in predicting the prognosis of GC patients and validated in an external independent cohort. Finally, we developed a nomogram that can be applied to clinical practice.Conclusions: Our study established a three-gene signature of GC based on ARGs that has reference significance for in-depth research on the apoptosis mechanism of GC and the exploration of new clinical treatment strategies.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lei Zhu ◽  
Fugui Yang ◽  
Lingwei Wang ◽  
Lin Dong ◽  
Zhiyuan Huang ◽  
...  

Abstract Background Ferroptosis is a recently recognized non-apoptotic cell death that is distinct from the apoptosis, necroptosis and pyroptosis. Considerable studies have demonstrated ferroptosis is involved in the biological process of various cancers. However, the role of ferroptosis in esophageal adenocarcinoma (EAC) remains unclear. This study aims to explore the ferroptosis-related genes (FRG) expression profiles and their prognostic values in EAC. Methods The FRG data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) database. Univariate and multivariate cox regressions were used to identify the prognostic FRG, and the predictive ROC model was established using the independent risk factors. GO and KEGG enrichment analyses were performed to investigate the bioinformatics functions of significantly different genes (SDG) of ferroptosis. Additionally, the correlations of ferroptosis and immune cells were assessed through the single-sample gene set enrichment analysis (ssGSEA) and TIMER database. Finally, SDG were verified in clinical EAC specimens and normal esophageal mucosal tissues. Results Twenty-eight significantly different FRG were screened from 78 EAC and 9 normal tissues. Enrichment analyses showed these SDG were mainly related to the iron-related pathways and metabolisms of ferroptosis. Gene network demonstrated the TP53, G6PD, NFE2L2 and PTGS2 were the hub genes in the biology of ferroptosis. Cox regression analyses demonstrated four FRG (CARS1, GCLM, GLS2 and EMC2) had prognostic values for overall survival (OS) (all P < 0.05). ROC curve showed better predictive ability using the risk score (AUC = 0.744). Immune cell enrichment analysis demonstrated that the types of immune cells and their expression levels in the high-risk group were significant different with those in the low-risk group (all P < 0.05). The experimental results confirmed the ALOX5, NOX1 were upregulated and the MT1G was downregulated in the EAC tissues compared with the normal esophageal mucosal tissues (all P < 0.05). Conclusions We identified differently expressed ferroptosis-related genes that may involve in EAC. These genes have significant values in predicting the patients’ OS and targeting ferroptosis may be an alternative for therapy. Further studies are necessary to verify these results of our study.


2020 ◽  
Vol 7 ◽  
Author(s):  
Mingde Cao ◽  
Junhui Zhang ◽  
Hualiang Xu ◽  
Zhujian Lin ◽  
Hong Chang ◽  
...  

Osteosarcoma (OS) is a malignant disease that develops rapidly and is associated with poor prognosis. Immunotherapy may provide new insights into clinical treatment strategies for OS. The purpose of this study was to identify immune-related genes that could predict OS prognosis. The gene expression profiles and clinical data of 84 OS patients were obtained from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. According to non-negative matrix factorization, two molecular subtypes of immune-related genes, C1 and C2, were acquired, and 597 differentially expressed genes between C1 and C2 were identified. Univariate Cox analysis was performed to get 14 genes associated with survival, and 4 genes (GJA5, APBB1IP, NPC2, and FKBP11) obtained through least absolute shrinkage and selection operator (LASSO)-Cox regression were used to construct a 4-gene signature as a prognostic risk model. The results showed that high FKBP11 expression was correlated with high risk (a risk factor), and that high GJA5, APBB1IP, or NPC2 expression was associated with low risk (protective factors). The testing cohort and entire TARGET cohort were used for internal verification, and the independent GSE21257 cohort was used for external validation. The study suggested that the model we constructed was reliable and performed well in predicting OS risk. The functional enrichment of the signature was studied through gene set enrichment analysis, and it was found that the risk score was related to the immune pathway. In summary, our comprehensive study found that the 4-gene signature could be used to predict OS prognosis, and new biomarkers of great significance for understanding the therapeutic targets of OS were identified.


2020 ◽  
Author(s):  
Lei Zhu ◽  
Fugui Yang ◽  
Lingwei Wang ◽  
Lin Dong ◽  
Zhiyuan Huang ◽  
...  

Abstract Background Ferroptosis is a recently recognized non-apoptotic cell death that is distinct from the apoptosis, necroptosis and pyroptosis. Considerable studies have demonstrated ferroptosis is involved in the biological process of various cancers. However, the role of ferroptosis in esophageal adenocarcinoma (EAC) remains unclear. The aim of this study was to explore the ferroptosis-related genes (FRG) expression profiles and their prognostic values in EAC.Methods The FRG data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) database. Univariate and multivariate cox regressions were used to identify the prognostic FRG, and the predictive ROC model was established using the independent risk factors. GO and KEGG enrichment analyses were performed to investigate the bioinformatics functions of significantly different genes (SDG) of ferroptosis. Additionally, the correlations of ferroptosis and immune cells were assessed through the single-sample gene set enrichment analysis (ssGSEA). Finally, significantly different genes were verified in our clinical EAC specimens and normal esophageal mucosal tissues.Results: Twenty-eight significantly different FRG were screened from 78 EAC and 9 normal tissues. GO and KEGG enrichments showed these SDG were mainly related to the iron-related pathways and metabolisms of ferroptosis. Gene network demonstrated the TP53, G6PD, NFE2L2 and PTGS2 were the hub genes in the biology of ferroptosis. Cox regression analyses demonstrated four FRG (CARS1, GCLM, GLS2 and EMC2) had prognostic values for overall survival (OS) (all P<0.001). ROC curves showed better efficacy to predict survival using the risk score (AUC=0.744). Immune cell enrichment analysis demonstrated that the types of immune cells and their expression levels in the high-risk group were significant different with those in the low-risk group (all P<0.05). The experimental results confirmed the ALOX5, NOX1 were upregulated and the MT1G was downregulated in the EAC tissues compared with the normal esophageal mucosal tissues (all P<0.05).Conclusions: We identified differently expressed ferroptosis-related genes that may involve in the process in EAC. These genes have significant values in predicting the patients’ OS and targeting ferroptosis may be an alternative for therapy. Further studies are necessary to verify these results of our study.


2021 ◽  
Author(s):  
Chengran Xu ◽  
Jinhai Huang ◽  
Yi Yang ◽  
Lun Li ◽  
Guangyu Li

Abstract Background: The homeobox gene 5 (HOXB5) encodes a transcription factor that regulates the central nervous system embryonic development. Of note, its expression pattern and prognostic role in glioma remain unelucidated. This study aimed to identify the relationship between HOXB5 and glioma by investigating the HOXB5 expression data from the The Cancer Genome Atlas (TCGA) and The Genotype Tissue Expression (GTEx) databases and validating the obtained data using the Chinese Glioma Genome Atlas (CGGA) database. Kaplan-Meier and univariate cox regression analyses were performed to assess the prognostic value of HOXB5. The key functions and signaling pathways of HOXB5 were analyzed using GSEA and GSVA. Immune infiltration was calculated using Microenvironment Cell Populations-counter (MCP-counter), single-sample Gene Set Enrichment Analysis (ssGSEA), and ESTIMATE algorithms.Result: HOXB5 expression was elevated in glioma tissues. The increased levels of HOXB5 were significantly correlated with a higher WHO grade and aggressive cancer phenotypes. HOXB5 overexpression represented a risk factor that was associated with shorter overall survival (OS) while exhibiting a moderate forecast efficiency in most clinical subgroups. These results were validated using the CGGA and Rembrandt datasets. Furthermore, the functional analysis showed enrichment of angiogenesis, the IL6/JAK-STAT3 pathway, and inflammatory response in the tissues that showed high expression of HOXB5. Lastly, the high expression of HOXB5 was associated with enrichment of Tregs and MDSCs, and HOXB5 expression was shown to play a role in several immune checkpoint genes.Conclusions: HOXB5 may serve as a predictive factor of glioma malignancy and prognostic status and represents potential as a molecular treatment candidate.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hailong Wu ◽  
Yan Zhou ◽  
Haiyang Wu ◽  
Lixia Xu ◽  
Yan Yan ◽  
...  

Background: Gliomas are the most common intracranial malignant neoplasms and have high recurrence and mortality rates. Recent literatures have reported that centromere protein N (CENPN) participates in tumor development. However, the clinicopathologic significance and biological functions of CENPN in glioma are still unclear.Methods: Clinicopathologic data and gene expression profiles of glioma cases downloaded from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases were utilized to determine the associations between the expression of CENPN and clinical features of glioma. Kaplan-Meier and ROC curves were plotted for prognostic analysis. Gene set enrichment analysis (GSEA) and single sample gene set enrichment analysis (ssGSEA) were applied to identify immune-related functions and pathways associated with CENPN’ differential expression. In vitro experiments were conducted to investigate the impacts of CENPN on human glioma cells.Results: Elevated CENPN expression was associated with unfavorable clinical variables of glioma patients, which was validated in clinical specimens obtained from our institution by immunohistochemical staining (IHC). The GSEA and ssGSEA results revealed that CENPN expression was strongly correlated with inflammatory activities, immune-related signaling pathways and the infiltration of immune cells. Cell experiments showed that CENPN deficiency impaired cell proliferation, migration and invasion ability and increased glioma apoptosis.Conclusion: CENPN could be a promising therapeutic target for glioma.


2020 ◽  
Author(s):  
Dan Wu ◽  
Yi Ding ◽  
junbai fan

Abstract Background: Esophageal carcinoma (ESCA) is a malignant tumor with high invasiveness and mortality. Autophagy has multiple roles in the development of cancer; however, there are limited data on autophagy genes associated with long non-coding RNAs (lncRNAs) in ESCA. The purpose of this study was to screen potential diagnostic and prognostic molecules, and to identify gene co-expression networks associated with autophagy in ESCA. Methods: We downloaded transcriptome expression profiles from The Cancer Genome Atlas and autophagy-related gene data from the Human Autophagy Database, and analyzed the co-expression of mRNAs and lncRNAs. In addition, the diagnostic and prognostic value of autophagy-related lncRNAs was analyzed by multivariate Cox regression. Furthermore, Kyoto Encyclopedia of Genes and Genomes analysis was carried out for high-risk patients, and enriched pathways were analyzed by gene set enrichment analysis. Results: The results showed that genes of high-risk patients were enriched in protein export and spliceosome. Based on Cox stepwise regression and survival analysis, we identified seven autophagy-related lncRNAs with prognostic and diagnostic value, with the potential to be used as a combination to predict the prognosis of patients with ESCA. Finally, a co-expression network related to autophagy was constructed. Conclusion: These results suggest that autophagy-related lncRNAs and the spliceosome play important parts in the pathogenesis of ESCA. Our findings provide new insight into the molecular mechanism of ESCA and suggest a new method for improving its treatment.


2020 ◽  
Vol 10 (8) ◽  
pp. 1189-1196
Author(s):  
Kaikai Ren ◽  
Jiakang Ma ◽  
Bo Zhou ◽  
Xiaoyan Lin ◽  
Mingyu Hou ◽  
...  

Hepatocellular carcinoma (HCC) is a malignancy originating from hepatocytes with a high rate of distant metastasis and recurrence. HCC prognosis remains poorly understood, although its diagnosis and treatment have improved globally. Therefore, it is necessary to identify reliable predictive and prognostic indicators of HCC. HCC gene expression profiles and corresponding clinical data were downloaded from The Cancer Genome Atlas. Seven lncRNAs (C10orf91, AC011352.3, AC015722.2, AC006372.1, PICSAR, AC110285.3, and AP001972.4) associated with immune and clinicopathological features were identified as biomarker candidates for HCC prognosis based on single-sample gene set enrichment analysis, the ESTIMATE algorithm, and Cox PHR analyses. Altogether, the findings revealed that the seven immune-related lncRNAs may provide a reference for improving HCC prognosis.


Sign in / Sign up

Export Citation Format

Share Document