scholarly journals BK polyomavirus infection promotes growth and aggressiveness in bladder cancer

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Yigang Zeng ◽  
Jiajia Sun ◽  
Juan Bao ◽  
Tongyu Zhu

Abstract Background Recent studies have confirmed the integration of the BK polyomavirus (BKPyV) gene into the cellular genome of urothelial carcinomas in transplant recipients, further confirming the correlation between BKPyV and urothelial carcinomas after transplantation. However, the role BKPyV infections play in the biological function of bladder cancer remains unclear. Methods We developed a BKPyV-infected bladder cancer cell model and a mice tumor model to discuss the role of BKPyV infections. Results Our research proves that BKPyV infections promote the proliferation, invasion and migration of bladder cancer cells, while the activation of β-catenin signaling pathway is one of its mediation mechanisms. Conclusions We first described BKPyV infection promotes the proliferation, invasion and migration of bladder cancer. We verified the role of β-catenin signaling pathway and Epithelial-Mesenchymal Transition effect in BKPyV-infected bladder cancer. These results provide meaningful information towards the diagnosis and treatment of clinical bladder cancer.

2020 ◽  
Author(s):  
Jiajia Sun ◽  
Yigang Zeng ◽  
Juan Bao ◽  
Tongyu Zhu

Abstract Background Recent studies have confirmed the integration of the BK polyomavirus (BKPyV) gene into the cellular genome of urothelial carcinomas in transplant recipients, further confirming the correlation between BKPyV and urothelial carcinomas after transplantation. However, the role BKPyV infections play in the biological function of bladder cancer remains unclear.Methods We developed a BKPyV-infected bladder cancer cell model and a mice tumor model to discuss the role of BKPyV infections.Results Our research proves that BKPyV infections promote the proliferation, invasion and migration of bladder cancer, while the activation of β-catenin signaling pathway is one of its mediation mechanisms.Conclusions We first described BKPyV infection promotes the proliferation, invasion and migration of bladder cancer. We verified the role of β-catenin signaling pathway and Epithelial-Mesenchymal Transition effect in BKPyV-infected bladder cancer. These results provide meaningful information towards the diagnosis and treatment of clinical bladder cancer.


2020 ◽  
Author(s):  
Yigang Zeng ◽  
Jiajia Sun ◽  
Juan Bao ◽  
Tongyu Zhu

Abstract Background: Recent studies have confirmed the integration of the BK polyomavirus (BKPyV) gene into the cellular genome of urothelial carcinomas in transplant recipients, further confirming the correlation between BKPyV and urothelial carcinomas after transplantation. However, the role BKPyV infections play in the biological function of bladder cancer remains unclear. Methods: We developed a BKPyV-infected bladder cancer cell model and a mice tumor model to discuss the role of BKPyV infections. Results: Our research proves that BKPyV infections promote the proliferation, invasion and migration of bladder cancer cells, while the activation of β-catenin signaling pathway is one of its mediation mechanisms. Conclusions: We first described BKPyV infection promotes the proliferation, invasion and migration of bladder cancer. We verified the role of β-catenin signaling pathway and Epithelial-Mesenchymal Transition effect in BKPyV-infected bladder cancer. These results provide meaningful information towards the diagnosis and treatment of clinical bladder cancer.


2021 ◽  
Author(s):  
Wenbin Shu ◽  
YuJing Lin ◽  
Yan Yan ◽  
YaoHui Sun ◽  
XiangWen Wu ◽  
...  

Abstract BackgroundInsulin-like growth factor 2 (IGF2) mRNA-binding protein 2 (IGF2BP2), as a m6A “reader”, is known to be an oncogene, and its expression is elevated in multiple tumors. However, the role of IGF2PB2 in esophageal squamous cell carcinoma (ESCC) is still unclear. MethodsThis study aims to investigate the role of IGF2PB2 expression in ESCC proliferation, invasion and migration as well as the possible mechanism. IGF2BP2 expression was found to be elevated in ESCC tissues by qRT-PCR, western blotting, and immunohistochemical (IHC) staining. ResultsKnocking down IGF2BP2 expression prevented the proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) of KYSE450 and TE1 cells. Knocking out IGF2BP2 reduced tumorigenesis in vivo. Overexpression of IGF2BP2 was performed, and it was proven that IGF2BP2 had an oncogenic effect in KYSE450 and TE1 cells. Moreover, LY294002, a highly selective inhibitor of PI3K, reversed the effect of IGF2BP2 overexpression on EMT processes. All these results show that the effects of IGF2BP2 on oncogenesis and EMT were clearly exerted via the PI3K/AKT signaling pathway. ConclusionsIn conclusion, this study demonstrates that the oncogenic function of IGF2BP2 is mediated by the PI3K/AKT signaling pathway and is related to EMT in ESCC. In addition, IGF2BP2 can serve as a diagnostic and oncotherapeutic marker in further studies.


2019 ◽  
Vol 9 (9) ◽  
pp. 1215-1221
Author(s):  
Li Jie ◽  
Zhangcai Zheng ◽  
Liping Liu ◽  
Yali Liu ◽  
Zhaoyan Meng ◽  
...  

Preeclampsia (PE) is an idiopathic hypertension syndrome occurring after 20 weeks of gestation. Reports showed that lncRNAs expression was abnormal in preeclampsia. We aimed to investigate the role of lncRNA CEACAMP8 in the proliferation, invasion and migration of trophoblast cells to improve the preeclampsia. The cell transfection effects were determined by RT-qPCR analysis. The proliferation, invasion and migration of HTR-8/SVneo cells were detected by CCK-8 assay, transwell assay and wound healing assay. The flow cytometry analysis analyzed the cell cycle. Moreover, the expression of CDK2, cyclinD1, P21, MMP2, MMP9, E-cadherin, b-catenin and vimentin was determined by the western blot analysis. Consequently, CEACAMP8 inhibition promoted the proliferation, invasion and migration of HTR-8/SVneo cells and kept most of the cells in the S phase. The expression of proteins related to the proliferation, invasion and migration of HTR-8/SVneo cells were also changed in accordance with the increase of proliferation, invasion and migration of HTR-8/SVneo cells. In addition, lncRNA CEACAMP8 inhibition decreased the expression of E-cadherin and b-catenin, and increased the vimentin expression to promote the epithelial-mesenchymal transition. And, CEACAMP8 overexpression could reverse the above changes. This study indicated that CEACAMP8 inhibition promoted the proliferation, invasion and migration of HTR-8/SVneo cells and lncRNA CEACAMP8 overexpression reversed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koichi Kitagawa ◽  
Katsumi Shigemura ◽  
Aya Ishii ◽  
Takuji Nakashima ◽  
Hirotaka Matsuo ◽  
...  

AbstractNanaomycin K, derived from Streptomyces rosa subsp. notoensis OS-3966T, has been discovered to have inhibitory bioactivity on epithelial–mesenchymal transition (EMT), an important mechanism of cancer cell invasion and migration. In this study, we examined the anti-EMT and anti-tumor effect of nanaomycin K in bladder cancer, where EMT has important roles in progression. We treated two bladder cancer lines, non-muscle-invasive KK47 and muscle-invasive T24, with nanaomycin K to determine the effects on cell proliferation, apoptosis and expression of EMT markers in vitro. Wound-healing assays were performed to assess cell invasion and migration. We conducted an in vivo xenograft study in which mice were inoculated with bladder cancer cells and treated with intratumoral administration of nanaomycin K to investigate its anti-tumor and EMT inhibition effects. As the results, nanaomycin K (50 µg/mL) significantly inhibited cell proliferation in KK47 (p < 0.01) and T24 (p < 0.01) in the presence of TGF-β, which is an EMT-inducer. Nanaomycin K (50 µg/mL) also significantly inhibited cell migration in KK47 (p < 0.01) and T24 (p < 0.01), and induced apoptosis in both cell lines in the presence of TGF-β (p < 0.01). Nanaomycin K increased the expression of E-cadherin and inhibited the expression of N-cadherin and vimentin in both cell lines. Nanaomycin K also decreased expression of Snail, Slug, phospho-p38 and phospho-SAPK/JNK especially in T24. Intratumoral administration of nanaomycin K significantly inhibited tumor growth in both KK47 and T24 cells at high dose (1.0 mg/body) (p = 0.009 and p = 0.003, respectively) with no obvious adverse events. In addition, nanaomycin K reversed EMT and significantly inhibited the expression of Ki-67 especially in T24. In conclusion, we demonstrated that nanaomycin K had significant anti-EMT and anti-tumor effects in bladder cancer cells, suggesting that nanaomycin K may be a therapeutic candidate for bladder cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document