scholarly journals Nanaomycin K inhibited epithelial mesenchymal transition and tumor growth in bladder cancer cells in vitro and in vivo

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koichi Kitagawa ◽  
Katsumi Shigemura ◽  
Aya Ishii ◽  
Takuji Nakashima ◽  
Hirotaka Matsuo ◽  
...  

AbstractNanaomycin K, derived from Streptomyces rosa subsp. notoensis OS-3966T, has been discovered to have inhibitory bioactivity on epithelial–mesenchymal transition (EMT), an important mechanism of cancer cell invasion and migration. In this study, we examined the anti-EMT and anti-tumor effect of nanaomycin K in bladder cancer, where EMT has important roles in progression. We treated two bladder cancer lines, non-muscle-invasive KK47 and muscle-invasive T24, with nanaomycin K to determine the effects on cell proliferation, apoptosis and expression of EMT markers in vitro. Wound-healing assays were performed to assess cell invasion and migration. We conducted an in vivo xenograft study in which mice were inoculated with bladder cancer cells and treated with intratumoral administration of nanaomycin K to investigate its anti-tumor and EMT inhibition effects. As the results, nanaomycin K (50 µg/mL) significantly inhibited cell proliferation in KK47 (p < 0.01) and T24 (p < 0.01) in the presence of TGF-β, which is an EMT-inducer. Nanaomycin K (50 µg/mL) also significantly inhibited cell migration in KK47 (p < 0.01) and T24 (p < 0.01), and induced apoptosis in both cell lines in the presence of TGF-β (p < 0.01). Nanaomycin K increased the expression of E-cadherin and inhibited the expression of N-cadherin and vimentin in both cell lines. Nanaomycin K also decreased expression of Snail, Slug, phospho-p38 and phospho-SAPK/JNK especially in T24. Intratumoral administration of nanaomycin K significantly inhibited tumor growth in both KK47 and T24 cells at high dose (1.0 mg/body) (p = 0.009 and p = 0.003, respectively) with no obvious adverse events. In addition, nanaomycin K reversed EMT and significantly inhibited the expression of Ki-67 especially in T24. In conclusion, we demonstrated that nanaomycin K had significant anti-EMT and anti-tumor effects in bladder cancer cells, suggesting that nanaomycin K may be a therapeutic candidate for bladder cancer treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yibin Zhao ◽  
Hongyi Zhou ◽  
Jie Shen ◽  
Shaohui Yang ◽  
Ke Deng ◽  
...  

BackgroundDysregulated microRNAs (miRNAs) are common in human cancer and are involved in the proliferation, promotion, and metastasis of tumor cells. Therefore, this study aimed to evaluate the expression and biological function of miR-1236-3p in colon cancer.MethodsThis study screened the miRNA in normal and colon cancer tissues through array analysis. In addition, quantitative Reverse Transcription–Polymerase Chain Reaction (qRT-PCR) analysis was performed to validate the expression of miR-1236-3p in normal and tumor tissues from colon cancer patients and cancer cell lines. Online predicting algorithms and luciferase reporter assays were also employed to confirm Doublecortin Like Kinase 3 (DCLK3) was the target for miR-1236-3p. Moreover, the impact of miR-1236-3p on the progression of colon cancer was evaluated in vitro and in vivo. Western blotting and qRT-PCR were also performed to investigate the interactions between miR-1236-3p and DCLK3.ResultsMiR-1236-3p was significantly downregulated in colon cancer tissues and its expression was associated with the TNM stage and metastasis of colon. In addition, the in vitro and in vivo experiments showed that miR-1236-3p significantly promoted cancer cell apoptosis and inhibited the proliferation, invasion, and migration of cancer cells. The results also showed that miR-1236-3p hindered Epithelial–mesenchymal Transition (EMT) by targeting DCLK3. Moreover, the expression of DCLK3 mediated the effects of miR-1236-3p on the progression of cancer.ConclusionsMiR-1236-3p functions as a tumor suppressor in colon cancer by targeting DCLK3 and is therefore a promising therapeutic target for colon cancer.



Author(s):  
Jun Zou ◽  
Ruiyan Huang ◽  
Yanfei Chen ◽  
Xiaoping Huang ◽  
Huajun Li ◽  
...  

BackgroundAerobic glycolysis and epidermal–mesenchymal transition (EMT) play key roles in the development of bladder cancer. This study aimed to investigate the function and the underlying mechanism of dihydropyrimidinase like 2 (DPYSL2) in bladder cancer progression.MethodsThe expression pattern of DPYSL2 in bladder cancer and the correlation of DPYSL2 expression with clinicopathological characteristics of bladder cancer patients were analyzed using the data from different databases and tissue microarray. Gain- and loss-of-function assays were performed to explore the role of DPYSL2 in bladder cancer progression in vitro and in mice. Proteomic analysis was performed to identify the interacting partner of DPYSL2 in bladder cancer cells.FindingsThe results showed that DPYSL2 expression was upregulated in bladder cancer tissue compared with adjacent normal bladder tissue and in more aggressive cancer stages compared with lower stages. DPYSL2 promoted malignant behavior of bladder cancer cells in vitro, as well as tumor growth and distant metastasis in mice. Mechanistically, DPYSL2 interacted with pyruvate kinase M2 (PKM2) and promoted the conversion of PKM2 tetramers to PKM2 dimers. Knockdown of PKM2 completely blocked DPYSL2-induced enhancement of the malignant behavior, glucose uptake, lactic acid production, and epithelial–mesenchymal transition in bladder cancer cells.InterpretationIn conclusion, the results suggest that DPYSL2 promotes aerobic glycolysis and EMT in bladder cancer via PKM2, serving as a potential therapeutic target for bladder cancer treatment.



2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jinan Guo ◽  
Zhixin Chen ◽  
Hongtao Jiang ◽  
Zhou Yu ◽  
Junming Peng ◽  
...  

Abstract Background Bladder cancer is the most common human urological malignancies with poor prognosis, and the pathophysiology of bladder cancer involves multi-linkages of regulatory networks in the bladder cancer cells. Recently, the long noncoding RNAs (lncRNAs) have been extensively studied for their role on bladder cancer progression. In this study, we evaluated the expression of DLX6 Antisense RNA 1 (DLX6-AS1) in the cancerous bladder tissues and studied the possible mechanisms of DLX6-AS1 in regulating bladder cancer progression. Methods Gene expression was determined by qRT-PCR; protein expression levels were evaluated by western blot assay; in vitro functional assays were used to determine cell proliferation, invasion and migration; nude mice were used to establish the tumor xenograft model. Results Our results showed the up-regulation of DLX6-AS1 in cancerous bladder cancer tissues and bladder cell lines, and high expression of DLX6-AS1 was correlated with advance TNM stage, lymphatic node metastasis and distant metastasis. The in vitro experimental data showed that DLX6-AS1 overexpression promoted bladder cancer cell growth, proliferation, invasion, migration and epithelial-to-mesenchymal transition (EMT); while DLX6-AS1 inhibition exerted tumor suppressive actions on bladder cancer cells. Further results showed that DLX6-AS1 overexpression increased the activity of Wnt/β-catenin signaling, and the oncogenic role of DLX6-AS1 in bladder cancer cells was abolished by the presence of XAV939. On the other hand, DLX6-AS1 knockdown suppressed the activity of Wnt/β-catenin signaling, and the tumor-suppressive effects of DLX6-AS1 knockdown partially attenuated by lithium chloride and SB-216763 pretreatment. The in vivo tumor growth study showed that DLX6-AS1 knockdown suppressed tumor growth of T24 cells and suppressed EMT and Wnt/β-catenin signaling in the tumor tissues. Conclusion Collectively, the present study for the first time identified the up-regulation of DLX6-AS1 in clinical bladder cancer tissues and in bladder cancer cell lines. The results from in vitro and in vivo assays implied that DLX6-AS1 exerted enhanced effects on bladder cancer cell proliferation, invasion and migration partly via modulating EMT and the activity of Wnt/β-catenin signaling pathway.



2018 ◽  
Vol 46 (4) ◽  
pp. 1606-1616 ◽  
Author(s):  
Peng Li ◽  
Xiao Yang ◽  
Wenbo Yuan ◽  
Chengdi Yang ◽  
Xiaolei Zhang ◽  
...  

Background/Aims: CircRNAs regulate gene expression in different malignancies. However, the role of Cdr1as in the tumourigenesis of bladder cancer and its potential mechanisms remain unknown. Methods: qRT-PCR was used to detect Cdr1as and target miRNA expression in bladder cancer tissues and cell lines. Biological functional experiments were performed to detect the effects of Cdr1as on the biological behaviour of bladder cancer cells in vivo and in vitro. Bioinformatic analysis was utilised to predict potential miRNA target sites on Cdr1as. Ago2 RNA binding protein immunoprecipitation assay, RNA antisense purification assay, biotin pull down assay and RNA FISH were performed to detect the interaction between Cdr1as and target miRNAs. Western blot was used to determine the expression level of p21 in bladder cancer cells. Results: Cdr1as was significantly down-regulated in bladder cancer tissues compared with adjacent normal tissues. Overexpression of Cdr1as inhibited the proliferation, invasion and migration of bladder cancer cells in vitro and slowed down tumour growth in vivo. Cdr1as sponged multiple miRNAs in bladder cancer. Moreover, Cdr1as directly bound to miR-135a and inhibited its activity in bladder cancer. Conclusion: Cdr1as is down-regulated and sponges multiple miRNAs in bladder cancer. It exerts anti-oncogenic functions by sponging microRNA-135a.



2017 ◽  
Vol 42 (5) ◽  
pp. 1847-1856 ◽  
Author(s):  
Zhi-Dong Lv ◽  
Hai-Bo Wang ◽  
Xiang-Ping Liu ◽  
Li-Ying Jin ◽  
Ruo-Wu Shen ◽  
...  

Background/Aims: Epithelial-mesenchymal transition (EMT) is recognized as a crucial mechanism in breast cancer progression and metastasis. Paired-related homeobox 2 (Prrx2) has been identified as a new EMT inducer in cancer, but the underlying mechanisms are still poorly understood. Methods: The expression of Prrx2 was assessed by immunohistochemistry in breast cancer tissues to evaluate the clinicopathological significance of Prrx2, as well as the correlation between Prrx2 and EMT. Short hairpin RNA knockdown of Prrx2 was used to examine cellular effects of Prrx2, detecte the expression of Wnt/β-catenin signaling and EMT-associated proteins, and observe cell proliferation, invasion and migration abilities in vitro and in vivo. Results: Clinical association studies showed that Prrx2 expression was related to tumor size, lymph node metastasis, tumor node metastasis stages, EMT and poor survival. Results also showed that knockdown of Prrx2 could alter cell morphology, suppressed the abilities of cell proliferation, invasion and migration in breast cancer. Moreover, silencing of Prrx2 induced the mesenchymal-epithelial transition and prevented nuclear translocation of β-catenin, inhibited wnt/β-catenin signaling pathway. Conclusion: Our study indicated that Prrx2 may be an important activator of EMT in human breast cancer and it can serve as a molecular target of therapeutic interventions for breast cancer.



2017 ◽  
Vol 41 (6) ◽  
pp. 2399-2410 ◽  
Author(s):  
Yi Chen ◽  
Ya Peng ◽  
Zhipeng Xu ◽  
Bo Ge ◽  
Xuebao Xiang ◽  
...  

Background: LncRNA ROR, a tumor oncogene associated with various human cancers, has been reported to be involved in regulating various cellular processes, such as proliferation, apoptosis and invasion through targeting multiple genes. However, the molecular biological function in bladder cancer has not been clearly elucidated. The aim of this study is to explore ROR expression levels and evaluated its function in bladder cancer. Methods: LncRNA ROR expression levels in the 36 pairs of bladder cancer tissues (and corresponding non-tumor tissues) and bladder cancer cells were assessed by qRT-PCR. MTT assay, colony formation assay, flow cytometric analysis, wound healing assay, cell transwell assays, attachment/detachment and western blotting were performed to assess the effects of ROR on proliferation, apoptosis, migration/invasion and epithelial-to-mesenchymal (EMT) phenotypes in BC cells in vitro. ZEB1 is target of ROR. Rescue assays were performed to further confirm that ROR contributes to the progression of BC cells through targeting ZEB1. Results: LncRNA ROR was up-regulated in bladder cancer tissues (compared to adjacent non-tumor tissues) and was almost overexpression in bladder cancer cells (compared with normal urothelial cell line SVHUC-1 cells). Increased lncRNA ROR expression significantly promoted tumor cells proliferation, inhibited cells apoptosis, facilitated cells metastasis and contributed to the formation of EMT phenotype. While down-regulated ROR could obviously inhibit cells proliferation, promote cells apoptosis, inhibit metastasis and reverse EMT to MET. ZEB1 was a target gene of ROR and was positive correlation with the level of ROR in cancer tissues. Conclusion: These results indicated that lncRNA ROR was associated with tumor progression in bladder cancer cells.



2018 ◽  
Vol 47 (1) ◽  
pp. 245-256 ◽  
Author(s):  
Fengming Yang ◽  
Ke Wei ◽  
Zhiqiang Qin ◽  
Weitao Liu ◽  
Chuchu Shao ◽  
...  

Background/Aims: MicroRNAs regulate a wide range of biological processes of non-small cell lung cancer (NSCLC). Although miR-598 has been reported to act as a suppressor in osteosarcoma and colorectal cancer, the physiological function of miR-598 in NSCLC remains unknown. In this study, the role of miR-598 in NSCLC was investigated. Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to estimate the expression of miR-598 and Derlin-1 (DERL1) in both NSCLC tissues and cell lines. Immunohistochemistry (IHC) analyzed the association between the miR-598 expression and epithelial-mesenchymal transition (EMT) hallmark genes (E-cadherin, Vimentin) by staining the tumors representative of the high- and low-expression groups. The effect of miR-598 and DERL1 on invasion and migration was determined in vitro using transwell and wound-healing assays. The molecular mechanism underlying the relevance between miR-598 and DERL1 was elucidated by luciferase assay and Western blot. Western blot assessed the expression levels of EMT hallmark genes in cell lines. Xenograft tumor formation assay was conducted as an in vivo experiment. Results: In this study, a relatively low level of miR-598 and high DERL1 expressions were found in NSCLC specimens and cell lines. IHC results established a positive correlation between the miR-598 expression and E-cadherin and a negative with Vimentin. DERL1 was verified as a direct target of miR-598 by luciferase assay. In vitro, the over-expression of miR-598 negatively regulated DERL1 and EMT for the suppression of invasion and migration. In vivo, the over-expression of miR-598 could inhibit tumor cell metastasis in NSCLC. Conclusions: These findings for the first time revealed that miR-598, as a tumor suppressor, negatively regulate DERL1 and EMT to suppress the invasion and migration in NSCLC, thereby putatively serving as a novel therapeutic target for NSCLC clinical treatment.



2018 ◽  
Author(s):  
Xuechen Yu ◽  
Yuanzhen Zhang ◽  
Wei Zhang ◽  
Huijun Chen

AbstractThis study investigated the effects of microRNA-200c (miR-200c) and cofilin-2 (CFL2) in regulating epithelial-mesenchymal transition (EMT) in ovarian cancer. The level of miR-200c was lower in invasive SKOV3 cells than that in non-invasive OVCAR3 cells, whereas CFL2 showed the opposite trend. Bioinformatics analysis and dual-luciferase reporter gene assays indicated that CFL2 was a direct target of miR-200c. Furthermore, SKOV3 and OVCAR3 cells were transfected with miR-200c mimic or inhibitor, pCDH-CFL2 (CFL2 overexpression), or CFL2 shRNA (CFL2 silencing). MiR-200c inhibition and CFL2 overexpression resulted in elevated levels of both CFL2 and vimentin while reducing E-cadherin expression. They also increased ovarian cancer cell invasion and migrationin vitroandin vivoand increased the tumor volumes. Conversely, miR-200c mimic and CFL2 shRNA exerted the opposite effects as those aforementioned. In addition, the effects of pCDH-CFL2 and CFL2 shRNA were reversed by the miR-200c mimic and inhibitor, respectively. This finding suggested that miR-200c could be a potential tumor suppressor by targeting CFL2 in the EMT process.



2021 ◽  
pp. 1-9
Author(s):  
Huan Guo ◽  
Baozhen Zeng ◽  
Liqiong Wang ◽  
Chunlei Ge ◽  
Xianglin Zuo ◽  
...  

BACKGROUND: The incidence of lung cancer in Yunnan area ranks firstly in the world and underlying molecular mechanisms of lung cancer in Yunnan region are still unclear. We screened a novel potential oncogene CYP2S1 used mRNA microassay and bioinformation database. The function of CYP2S1 in lung cancer has not been reported. OBJECTIVE: To investigate the functions of CYP2S1 in lung cancer. METHODS: Immunohistochemistry and Real-time PCR were used to verify the expression of CYP2S1. Colony formation and Transwell assays were used to determine cell proliferation, invasion and migration. Xenograft assays were used to detected cell growth in vivo. RESULTS: CYP2S1 is significantly up-regulated in lung cancer tissues and cells. Knockdown CYP2S1 in lung cancer cells resulted in decrease cell proliferation, invasion and migration in vitro. Animal experiments showed downregulation of CYP2S1 inhibited lung cancer cell growth in vivo. GSEA analysis suggested that CYP2S1 played functions by regulating E2F targets and G2M checkpoint pathway which involved in cell cycle. Kaplan-Meier analysis indicated that patients with high CYP2S1 had markedly shorter event overall survival (OS) time. CONCLUSIONS: Our data demonstrate that CYP2S1 exerts tumor suppressor function in lung cancer. The high expression of CYP2S1 is an unfavorable prognostic marker for patient survival.



Sign in / Sign up

Export Citation Format

Share Document