scholarly journals First-in-human study and clinical case reports of the alveolar bone regeneration with the secretome from human mesenchymal stem cells

2016 ◽  
Vol 12 (1) ◽  
Author(s):  
Wataru Katagiri ◽  
Masashi Osugi ◽  
Takamasa Kawai ◽  
Hideharu Hibi
Oncotarget ◽  
2017 ◽  
Vol 8 (13) ◽  
pp. 21031-21043 ◽  
Author(s):  
Deting Xue ◽  
Erman Chen ◽  
Wei Zhang ◽  
Xiang Gao ◽  
Shengdong Wang ◽  
...  

Author(s):  
Desi Sandra Sari ◽  
Fourier Dzar Eljabbar Latief ◽  
Ferdiansyah ◽  
Ketut Sudiana ◽  
Fedik Abdul Rantam

The tissue engineering approach for periodontal tissue regeneration using a combination of stem cells and scaffold has been vastly developed. Mesenchymal Stem Cells (MSCs) seeded with Bovine Teeth Scaffold (BTSc) can repair alveolar bone damage in periodontitis cases. The alveolar bone regeneration process was analyzed by micro-computed tomography (µ-CT) to observe the structure of bone growth and to visualize the scaffold in 3-Dimensional (3D). The purpose of this study is to analyze alveolar bone regeneration by µ-CT following the combination of MSCs and bovine teeth scaffold (MSCs-BTSc) implantation in the Wistar rat periodontitis model. Methods. MSCs were cultured from adipose-derived mesenchymal stem cells of rats. BTSc was taken from bovine teeth and freeze-dried with a particle size of 150-355 µm. MSCs were seeded on BTSc for 24 hours and transplanted in a rat model of periodontitis. Thirty-five Wistar rats were made as periodontitis models with LPS induction from P. gingivalis injected to the buccal section of interproximal gingiva between the first and the second mandibular right-molar teeth for six weeks. There were seven groups (control group, BTSc group on day 7, BTSc group on day 14, BTSc group on day 28, MSCs-BTSc group on day 7, MSCs-BTSc group on day 14, MSCs-BTSc group on day 28). The mandibular alveolar bone was analyzed and visualized in 3D with µ-CT to observe any new bone growth. Statistical Analysis. Group data were subjected to the Kruskal Wallis test followed by the Mann-Whitney (p <0.05). The µ-CT qualitative analysis shows a fibrous structure, which indicates the existence of new bone regeneration. Quantitative analysis of the periodontitis model showed a significant difference between the control model and the model with the alveolar bone resorption (p <0.05). The bone volume and density measurements revealed that the MSCs-BTSc group on day 28 formed new bone compared to other groups (p <0.05). Administration of MSCs-BTSc combination has the potential to form new alveolar bone.


2020 ◽  
Author(s):  
Laurence Burroughs ◽  
Mahetab H. Amer ◽  
Matthew Vassey ◽  
Britta Koch ◽  
Grazziela P Figueredo ◽  
...  

AbstractHuman mesenchymal stem cells (hMSCs) are widely represented in ongoing regenerative medicine clinical trials due to their ease of autologous implantation. In bone regeneration, crosstalk between macrophages and hMSCs is critical with macrophages playing a key role in the recruitment and differentiation of hMSCs. However, engineered biomaterials able to both direct hMSC fate and modulate macrophage phenotype have not yet been identified. A novel combinatorial chemistry-microtopography screening platform, the ChemoTopoChip, is used to identify materials suitable for bone regeneration by screening with human immortalized mesenchymal stem cells (hiMSCs) and human macrophages. The osteoinduction achieved in hiMSCs cultured on the “hit” materials in basal media is comparable to that seen when cells are cultured in osteogenic media, illustrating that these materials offer a materials-induced alternative in bone-regenerative applications. These also exhibit immunomodulatory effects, concurrently polarizing macrophages towards a pro-healing phenotype. Control of cell response is achieved when both chemistry and topography are recruited to instruct the required cell phenotype, combining synergistically. The large library of materials reveals that the relative roles of microtopography and material chemistry are similar, and machine learning identifies key material and topographical features for cell-instruction.


Bone ◽  
2010 ◽  
Vol 47 (1) ◽  
pp. 117-126 ◽  
Author(s):  
Giorgio Burastero ◽  
Sonia Scarfì ◽  
Chiara Ferraris ◽  
Chiara Fresia ◽  
Nadia Sessarego ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document