scholarly journals Automated discretization of ‘transpiration restriction to increasing VPD’ features from outdoors high-throughput phenotyping data

Plant Methods ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Soumyashree Kar ◽  
Ryokei Tanaka ◽  
Lijalem Balcha Korbu ◽  
Jana Kholová ◽  
Hiroyoshi Iwata ◽  
...  

Abstract Background Restricting transpiration under high vapor pressure deficit (VPD) is a promising water-saving trait for drought adaptation. However, it is often measured under controlled conditions and at very low throughput, unsuitable for breeding. A few high-throughput phenotyping (HTP) studies exist, and have considered only maximum transpiration rate in analyzing genotypic differences in this trait. Further, no study has precisely identified the VPD breakpoints where genotypes restrict transpiration under natural conditions. Therefore, outdoors HTP data (15 min frequency) of a chickpea population were used to automate the generation of smooth transpiration profiles, extract informative features of the transpiration response to VPD for optimal genotypic discretization, identify VPD breakpoints, and compare genotypes. Results Fifteen biologically relevant features were extracted from the transpiration rate profiles derived from load cells data. Genotypes were clustered (C1, C2, C3) and 6 most important features (with heritability > 0.5) were selected using unsupervised Random Forest. All the wild relatives were found in C1, while C2 and C3 mostly comprised high TE and low TE lines, respectively. Assessment of the distinct p-value groups within each selected feature revealed highest genotypic variation for the feature representing transpiration response to high VPD condition. Sensitivity analysis on a multi-output neural network model (with R of 0.931, 0.944, 0.953 for C1, C2, C3, respectively) found C1 with the highest water saving ability, that restricted transpiration at relatively low VPD levels, 56% (i.e. 3.52 kPa) or 62% (i.e. 3.90 kPa), depending whether the influence of other environmental variables was minimum or maximum. Also, VPD appeared to have the most striking influence on the transpiration response independently of other environment variable, whereas light, temperature, and relative humidity alone had little/no effect. Conclusion Through this study, we present a novel approach to identifying genotypes with drought-tolerance potential, which overcomes the challenges in HTP of the water-saving trait. The six selected features served as proxy phenotypes for reliable genotypic discretization. The wild chickpeas were found to limit water-loss faster than the water-profligate cultivated ones. Such an analytic approach can be directly used for prescriptive breeding applications, applied to other traits, and help expedite maximized information extraction from HTP data.

2020 ◽  
Author(s):  
Xingche Guo ◽  
Yumou Qiu ◽  
Dan Nettleton ◽  
Cheng-Ting Yeh ◽  
Zihao Zheng ◽  
...  

ABSTRACTHigh-throughput phenotyping is a modern technology to measure plant traits efficiently and in large scale by imaging systems over the whole growth season. Those images provide rich data for statistical analysis of plant phenotypes. We propose a pipeline to extract and analyze the plant traits for field phenotyping systems. The proposed pipeline include the following main steps: plant segmentation from field images, automatic calculation of plant traits from the segmented images, and functional curve fitting for the extracted traits. To deal with the challenging problem of plant segmentation for field images, we propose a novel approach on image pixel classification by transform domain neural network models, which utilizes plant pixels from greenhouse images to train a segmentation model for field images. Our results show the proposed procedure is able to accurately extract plant heights and is more stable than results from Amazon Turks, who manually measure plant heights from original images.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254908
Author(s):  
Sameer Joshi ◽  
Emily Thoday-Kennedy ◽  
Hans D. Daetwyler ◽  
Matthew Hayden ◽  
German Spangenberg ◽  
...  

Drought is one of the most severe and unpredictable abiotic stresses, occurring at any growth stage and affecting crop yields worldwide. Therefore, it is essential to develop drought tolerant varieties to ensure sustainable crop production in an ever-changing climate. High-throughput digital phenotyping technologies in tandem with robust screening methods enable precise and faster selection of genotypes for breeding. To investigate the use of digital imaging to reliably phenotype for drought tolerance, a genetically diverse safflower population was screened under different drought stresses at Agriculture Victoria’s high-throughput, automated phenotyping platform, Plant Phenomics Victoria, Horsham. In the first experiment, four treatments, control (90% field capacity; FC), 40% FC at initial branching, 40% FC at flowering and 50% FC at initial branching and flowering, were applied to assess the performance of four safflower genotypes. Based on these results, drought stress using 50% FC at initial branching and flowering stages was chosen to further screen 200 diverse safflower genotypes. Measured plant traits and dry biomass showed high correlations with derived digital traits including estimated shoot biomass, convex hull area, caliper length and minimum area rectangle, indicating the viability of using digital traits as proxy measures for plant growth. Estimated shoot biomass showed close association having moderately high correlation with drought indices yield index, stress tolerance index, geometric mean productivity, and mean productivity. Diverse genotypes were classified into four clusters of drought tolerance based on their performance (seed yield and digitally estimated shoot biomass) under stress. Overall, results show that rapid and precise image-based, high-throughput phenotyping in controlled environments can be used to effectively differentiate response to drought stress in a large numbers of safflower genotypes.


2020 ◽  
Vol 11 ◽  
Author(s):  
Soumyashree Kar ◽  
Vincent Garin ◽  
Jana Kholová ◽  
Vincent Vadez ◽  
Surya S. Durbha ◽  
...  

The rapid development of phenotyping technologies over the last years gave the opportunity to study plant development over time. The treatment of the massive amount of data collected by high-throughput phenotyping (HTP) platforms is however an important challenge for the plant science community. An important issue is to accurately estimate, over time, the genotypic component of plant phenotype. In outdoor and field-based HTP platforms, phenotype measurements can be substantially affected by data-generation inaccuracies or failures, leading to erroneous or missing data. To solve that problem, we developed an analytical pipeline composed of three modules: detection of outliers, imputation of missing values, and mixed-model genotype adjusted means computation with spatial adjustment. The pipeline was tested on three different traits (3D leaf area, projected leaf area, and plant height), in two crops (chickpea, sorghum), measured during two seasons. Using real-data analyses and simulations, we showed that the sequential application of the three pipeline steps was particularly useful to estimate smooth genotype growth curves from raw data containing a large amount of noise, a situation that is potentially frequent in data generated on outdoor HTP platforms. The procedure we propose can handle up to 50% of missing values. It is also robust to data contamination rates between 20 and 30% of the data. The pipeline was further extended to model the genotype time series data. A change-point analysis allowed the determination of growth phases and the optimal timing where genotypic differences were the largest. The estimated genotypic values were used to cluster the genotypes during the optimal growth phase. Through a two-way analysis of variance (ANOVA), clusters were found to be consistently defined throughout the growth duration. Therefore, we could show, on a wide range of scenarios, that the pipeline facilitated efficient extraction of useful information from outdoor HTP platform data. High-quality plant growth time series data is also provided to support breeding decisions. The R code of the pipeline is available at https://github.com/ICRISAT-GEMS/SpaTemHTP.


Author(s):  
David Eyland ◽  
Nathalie Luchaire ◽  
Llorenç Cabrera-Bosquet ◽  
Boris Parent ◽  
Steven Janssens ◽  
...  

Crop wild relatives, the closely related species of crops, may harbor potentially important sources of new allelic diversity for (a)biotic tolerance or resistance. However, to date wild diversity is only poorly characterized and evaluated. Banana has a large wild diversity but only a narrow proportion is currently used in breeding programs. The main objective of this work was to evaluate genotype-dependent transpiration responses in relation to the environment. By applying continuous high-throughput phenotyping, we were able to construct genotype-specific transpiration response models in relation to light, VPD and soil water potential. We characterized and evaluated 6 (sub)species and discerned four phenotypic clusters. Significant differences were observed in leaf area, cumulative transpiration and transpiration efficiency. We confirmed a general stomatal-driven ‘isohydric’ drought avoidance behavior, but discovered genotypic differences in the onset and intensity of stomatal closure. We pinpointed crucial genotype specific environmental conditions when drought avoidance mechanisms were initiated and when stress kicked in. Differences between (sub)species were more pronounced under certain environmental conditions, illustrating the need for high-throughput dynamic phenotyping, modelling and validation. We conclude that the banana wild relatives contain useful drought tolerance traits, emphasizing the importance of their conservation and potential for use in breeding programs.


2020 ◽  
Vol 27 (11) ◽  
pp. 1675-1687
Author(s):  
Neil S Zheng ◽  
QiPing Feng ◽  
V Eric Kerchberger ◽  
Juan Zhao ◽  
Todd L Edwards ◽  
...  

Abstract Objective Developing algorithms to extract phenotypes from electronic health records (EHRs) can be challenging and time-consuming. We developed PheMap, a high-throughput phenotyping approach that leverages multiple independent, online resources to streamline the phenotyping process within EHRs. Materials and Methods PheMap is a knowledge base of medical concepts with quantified relationships to phenotypes that have been extracted by natural language processing from publicly available resources. PheMap searches EHRs for each phenotype’s quantified concepts and uses them to calculate an individual’s probability of having this phenotype. We compared PheMap to clinician-validated phenotyping algorithms from the Electronic Medical Records and Genomics (eMERGE) network for type 2 diabetes mellitus (T2DM), dementia, and hypothyroidism using 84 821 individuals from Vanderbilt Univeresity Medical Center's BioVU DNA Biobank. We implemented PheMap-based phenotypes for genome-wide association studies (GWAS) for T2DM, dementia, and hypothyroidism, and phenome-wide association studies (PheWAS) for variants in FTO, HLA-DRB1, and TCF7L2. Results In this initial iteration, the PheMap knowledge base contains quantified concepts for 841 disease phenotypes. For T2DM, dementia, and hypothyroidism, the accuracy of the PheMap phenotypes were >97% using a 50% threshold and eMERGE case-control status as a reference standard. In the GWAS analyses, PheMap-derived phenotype probabilities replicated 43 of 51 previously reported disease-associated variants for the 3 phenotypes. For 9 of the 11 top associations, PheMap provided an equivalent or more significant P value than eMERGE-based phenotypes. The PheMap-based PheWAS showed comparable or better performance to a traditional phecode-based PheWAS. PheMap is publicly available online. Conclusions PheMap significantly streamlines the process of extracting research-quality phenotype information from EHRs, with comparable or better performance to current phenotyping approaches.


2011 ◽  
Author(s):  
E. Kyzar ◽  
S. Gaikwad ◽  
M. Pham ◽  
J. Green ◽  
A. Roth ◽  
...  

2021 ◽  
Author(s):  
Peng Song ◽  
Jinglu Wang ◽  
Xinyu Guo ◽  
Wanneng Yang ◽  
Chunjiang Zhao

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 749
Author(s):  
Julia Butt ◽  
Rajagopal Murugan ◽  
Theresa Hippchen ◽  
Sylvia Olberg ◽  
Monique van Straaten ◽  
...  

The emerging SARS-CoV-2 pandemic entails an urgent need for specific and sensitive high-throughput serological assays to assess SARS-CoV-2 epidemiology. We, therefore, aimed at developing a fluorescent-bead based SARS-CoV-2 multiplex serology assay for detection of antibody responses to the SARS-CoV-2 proteome. Proteins of the SARS-CoV-2 proteome and protein N of SARS-CoV-1 and common cold Coronaviruses (ccCoVs) were recombinantly expressed in E. coli or HEK293 cells. Assay performance was assessed in a COVID-19 case cohort (n = 48 hospitalized patients from Heidelberg) as well as n = 85 age- and sex-matched pre-pandemic controls from the ESTHER study. Assay validation included comparison with home-made immunofluorescence and commercial enzyme-linked immunosorbent (ELISA) assays. A sensitivity of 100% (95% CI: 86–100%) was achieved in COVID-19 patients 14 days post symptom onset with dual sero-positivity to SARS-CoV-2 N and the receptor-binding domain of the spike protein. The specificity obtained with this algorithm was 100% (95% CI: 96–100%). Antibody responses to ccCoVs N were abundantly high and did not correlate with those to SARS-CoV-2 N. Inclusion of additional SARS-CoV-2 proteins as well as separate assessment of immunoglobulin (Ig) classes M, A, and G allowed for explorative analyses regarding disease progression and course of antibody response. This newly developed SARS-CoV-2 multiplex serology assay achieved high sensitivity and specificity to determine SARS-CoV-2 sero-positivity. Its high throughput ability allows epidemiologic SARS-CoV-2 research in large population-based studies. Inclusion of additional pathogens into the panel as well as separate assessment of Ig isotypes will furthermore allow addressing research questions beyond SARS-CoV-2 sero-prevalence.


2021 ◽  
Author(s):  
Yi Hu ◽  
Robert D Guy ◽  
Raju Y Soolanayakanahally

Abstract Plants acquire multiple resources from the environment and may need to adjust and/or balance their respective resource-use efficiencies to maximize grow and survival, in a locally adaptive manner. In this study, tissue and whole-plant carbon isotopic composition (δ13C) and C/N ratios provided long-term measures of use efficiencies for water (WUE) and nitrogen (NUE), and a nitrogen isotopic composition (δ15N) based mass balance model was used to estimate traits related to N uptake and assimilation in heart-leaved willow (Salix eriocephala Michx.). In an initial common garden experiment consisting of 34 populations, we found population level variation in δ13C, C/N and δ15N, indicating different patterns in WUE, NUE and N uptake and assimilation. Although there was no relationship between foliar δ13C and C/N ratios among populations, there was a significant negative correlation between these measures across all individuals, implying a genetic and/or plastic trade-off between WUE and NUE not associated with local adaptation. To eliminate any environmental effect, we grew a subset of 21 genotypes hydroponically with nitrate as the sole N-source, and detected significant variation in δ13C, δ15N and C/N ratios. Variation in δ15N was mainly due to genotypic differences in the nitrate efflux/influx ratio (E/I) at the root. Both experiments suggested clinal variation in δ15N (and thus N uptake efficiency) with latitude of origin, which may relate to water availability and could contribute to global patterns in ecosystem δ15N. There was a tendency for genotypes with higher WUE to come from more water replete sites with shorter and cooler growing seasons. We found that δ13C, C/N, and E/I were not inter-correlated, suggesting that selection of growth, WUE, NUE and N uptake efficiency can occur without trade-off.


Sign in / Sign up

Export Citation Format

Share Document