scholarly journals SCD1, autophagy and cancer: implications for therapy

Author(s):  
Francesca Ascenzi ◽  
Claudia De Vitis ◽  
Marcello Maugeri-Saccà ◽  
Christian Napoli ◽  
Gennaro Ciliberto ◽  
...  

Abstract Background Autophagy is an intracellular degradation system that removes unnecessary or dysfunctional components and recycles them for other cellular functions. Over the years, a mutual regulation between lipid metabolism and autophagy has been uncovered. Methods This is a narrative review discussing the connection between SCD1 and the autophagic process, along with the modality through which this crosstalk can be exploited for therapeutic purposes. Results Fatty acids, depending on the species, can have either activating or inhibitory roles on autophagy. In turn, autophagy regulates the mobilization of fat from cellular deposits, such as lipid droplets, and removes unnecessary lipids to prevent cellular lipotoxicity. This review describes the regulation of autophagy by lipid metabolism in cancer cells, focusing on the role of stearoyl-CoA desaturase 1 (SCD1), the key enzyme involved in the synthesis of monounsaturated fatty acids. SCD1 plays an important role in cancer, promoting cell proliferation and metastasis. The role of autophagy in cancer is more complex since it can act either by protecting against the onset of cancer or by promoting tumor growth. Mounting evidence indicates that autophagy and lipid metabolism are tightly interconnected. Conclusion Here, we discuss controversial findings of SCD1 as an autophagy inducer or inhibitor in cancer, highlighting how these activities may result in cancer promotion or inhibition depending upon the degree of cancer heterogeneity and plasticity.

2013 ◽  
Vol 305 (7) ◽  
pp. E767-E775 ◽  
Author(s):  
Alexis D. Stamatikos ◽  
Chad M. Paton

Stearoyl-CoA desaturase-1 (SCD1) converts saturated fatty acids (SFA) into monounsaturated fatty acids and is necessary for proper liver, adipose tissue, and skeletal muscle lipid metabolism. While there is a wealth of information regarding SCD1 expression in the liver, research on its effect in skeletal muscle is scarce. Furthermore, the majority of information about its role is derived from global knockout mice, which are known to be hypermetabolic and fail to accumulate SCD1's substrate, SFA. We now know that SCD1 expression is important in regulating lipid bilayer fluidity, increasing triglyceride formation, and enabling lipogenesis and may protect against SFA-induced lipotoxicity. Exercise has been shown to increase SCD1 expression, which may contribute to an increase in intramyocellular triglyceride at the expense of free fatty acids and diacylglycerol. This review is intended to define the role of SCD1 in skeletal muscle and discuss the potential benefits of its activity in the context of lipid metabolism, insulin sensitivity, exercise training, and obesity.


2009 ◽  
Vol 4 (10) ◽  
pp. 1934578X0900401 ◽  
Author(s):  
Christel Brunschwig ◽  
François Xavier Collard ◽  
Jean-Pierre Bianchini ◽  
Phila Raharivelomanana

In order to establish a chemical fingerprint of vanilla diversity, thirty samples of V. planifolia J. W. Moore and V. tahitensis G. Jackson cured beans from seven producing countries were examined for their aroma and fatty acid contents. Both fatty acid and aroma compositions were found to vary between vanilla species and origins. Vanillin was found in higher amounts in V. planifolia (1.7-3.6% of dry matter) than in V. tahitensis (1.0-2.0%), and anisyl compounds were found in lower amounts in V. planifolia (0.05%) than in V. tahitensis (1.4%-2.1%). Ten common and long chain monounsaturated fatty acids (LCFA) were identified and were found to be characteristic of the vanilla origin. LCFA derived from secondary metabolites have discriminating compositions as they reach 5.9% and 15.8% of total fatty acids, respectively in V. tahitensis and V. planifolia. This study highlights the role of the curing method as vanilla cured beans of two different species cultivated in the same country were found to have quite similar fatty acid compositions.


2006 ◽  
Vol 64 (10) ◽  
pp. 31-39 ◽  
Author(s):  
José L. Quiles ◽  
Gustavo Barja ◽  
Maurizio Battino ◽  
José Mataix ◽  
Vincenzo Solfrizzi

2001 ◽  
Vol 29 (2) ◽  
pp. 250-267 ◽  
Author(s):  
R. J. A. Wanders ◽  
P. Vreken ◽  
S. Ferdinandusse ◽  
G. A. Jansen ◽  
H. R. Waterham ◽  
...  

Peroxisomes are subcellular organelles with an indispensable role in cellular metabolism. The importance of peroxisomes for humans is stressed by the existence of a group of genetic diseases in humans in which there is an impairment in one or more peroxisomal functions. Most of these functions have to do with lipid metabolism including the α and β-oxidation of fatty acids. Here we describe the current state of knowledge about peroxisomal fatty acid α- and β-oxidation with particular emphasis on the following: (1) the substrates β-oxidized in peroxisomes; (2) the enzymology of the α- and β-oxidation systems; (3) the permeability properties of the peroxisomal membrane and the role of the different transporters therein; (4) the interaction with other subcellular compartments, including the mitochondria, which are the ultimate site of NADH reoxidation and full degradation of acetyl-CoA to CO2 and water; and (5) the different disorders of peroxisomal α- and β-oxidation.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Begoña Porteiro ◽  
Marcos F. Fondevila ◽  
Teresa C. Delgado ◽  
Cristina Iglesias ◽  
Monica Imbernon ◽  
...  

Abstract p53 family members control several metabolic and cellular functions. The p53 ortholog p63 modulates cellular adaptations to stress and has a major role in cell maintenance and proliferation. Here we show that p63 regulates hepatic lipid metabolism. Mice with liver-specific p53 deletion develop steatosis and show increased levels of p63. Down-regulation of p63 attenuates liver steatosis in p53 knockout mice and in diet-induced obese mice, whereas the activation of p63 induces lipid accumulation. Hepatic overexpression of N-terminal transactivation domain TAp63 induces liver steatosis through IKKβ activation and the induction of ER stress, the inhibition of which rescues the liver functions. Expression of TAp63, IKKβ and XBP1s is also increased in livers of obese patients with NAFLD. In cultured human hepatocytes, TAp63 inhibition protects against oleic acid-induced lipid accumulation, whereas TAp63 overexpression promotes lipid storage, an effect reversible by IKKβ silencing. Our findings indicate an unexpected role of the p63/IKKβ/ER stress pathway in lipid metabolism and liver disease.


2020 ◽  
Author(s):  
Smita Eknath Desale ◽  
Subashchandrabose Chinnathambi

Abstract Background Tau seeds exhibit a detrimental role in the spread of disease in Alzheimer’s disease. These species are found to be neurotoxic and activate microglia. However, the activation of microglia in pro-inflammatory response further elevates neurodegeneration. Omega-3 dietary fatty acids, on the other hand; exert an anti-inflammatory response by microglia. Along with the receptor expression, omega-3 fatty acids influence various important cellular functions. The role of omega-3 fatty acids on actin remodeling, which is the basis of cellular functions such as migration and phagocytosis is not known. Here in this study, we focus on effect of dietary supplement of ALA on extracellular Tau internalization and assisted actin polymerization for the process. ALA is found to induce membrane ruffling and phagocytic cup formation along with cytoskeletal rearrangement to induce lamellipodia and filopodia at the front end to move forward and assist the cell to identify the target. ALA is observed to promote the internalization of Tau and necessary actin remodeling for phagocytosis. Methods α-Linolenic (ALA) acid has been used for the study. ALA was dissolved in 100% ethanol and solubilized at 50°C for 2 hours. The human Tau aggregates was prepared in vitro for the internalization study in microglia in presence of α-Linolenic acids (ALA) via fluorescence microscopy with Apotome. The studied the role α-Linolenic acids (ALA) actin remodeling in cellular processes in presence of Tau seed. The study of actin structures lamellipodia, filopodia, and membrane ruffling along with Iba-1 and Arp2/3 complex was observed on ALA exposure. Results Extracellular Tau species are found to internalize more presence of ALA in microglia. The extensive polarization and migration was observed as indicated by extensive lamellipodia and filopodia formation. The formation of extensive actin branching in lamellipodia and membrane ruffling was studied with the help of ARP2/3 complex for nucleating actin network. The high density of ARP2/3 complex at the leading ends of migratory microglia confirmed the extensive branching of actin filaments on ALA exposure. Enhanced formation of lamellipodia and filopodia helps in migration and internalization of tau seed. The actin dynamics supports the phagocytosis process. Conclusion Our approach provides the insights of beneficial role of ALA as anti-inflammatory dietary supplement to treat AD. ALA induces internalization of Tau and necessary actin remodeling for phagocytosis.


Author(s):  
Елена Анатольевна Чанчаева ◽  
Роман Иделевич Айзман ◽  
Сергей Сергеевич Сидоров

Оценивали параметры липидного обмена в связи с питанием коренного населения Горного Алтая. Выявлено высокое потребление насыщенных и мононенасыщенных жирных кислот, которое у мужчин обратно пропорционально концентрации холестерина в плазме крови. Данная закономерность свидетельствует об активности системы, обеспечивающей липидный гомеостаз. The parameters of lipid metabolism in connection with the nutrition of the indigenous population of the Altai Mountains were evaluated. High consumption of saturated and monounsaturated fatty acids was found, which in men is inversely proportional to the concentration of cholesterol in blood plasma. This pattern indicates the activity of the system that provides lipid homeostasis.


Sign in / Sign up

Export Citation Format

Share Document