scd1 expression
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi206-vi206
Author(s):  
Tomohiro Yamasaki ◽  
Lumin Zhang ◽  
Tyrone Dowdy ◽  
Adrian Lita ◽  
Mark Gilbert ◽  
...  

Abstract BACKGROUND Increased de novo lipogenesis is a hallmark of cancer metabolism. In this study, we interrogated the role of de novo lipogenesis in IDH1 mutated glioma’s growth and identified the key enzyme, Stearoyl-CoA desaturase 1 (SCD1) that provides this growth advantage. MATERIALS ANDMETHODS We prepared genetically engineered glioma cell lines (U251 wild-type: U251WT and U251 IDHR132H mutant: U251RH) and normal human astrocytes (empty vector induced-NHA: NHAEV and IDHR132H mutant: NHARH). Lipid metabolic analysis was conducted by using LC-MS and Raman imaging microscopy. SCD1 expression was investigated by The Cancer Genome Atlas (TCGA) data analysis and Western-blotting method. Knock-out of SCD1 was conducted by using CRISPR/Cas9 and shRNA. RESULTS Previously, we showed that IDH1 mut glioma cells have increased monounsaturated fatty acids (MUFAs). TCGA data revealed IDH mut glioma shows significantly higher SCD1 mRNA expression than wild-type glioma. Our model systems of IDH1 mut (U251RH, NHARH) showed increased expression of this enzyme compared with their wild-type counterpart. Moreover, addition of D-2HG to U251WT increased SCD1 expression. Herein, we showed that inhibition of SCD1 with CAY10566 decreased relative cell number and sphere forming capacity in a dose-dependent manner. Furthermore, addition of MUFAs were able to rescue the SCD1 inhibitor induced-cell death and sphere forming capacity. Knock out of SCD1 revealed decreased cell proliferation and sphere forming ability. Decreasing lipid content from the media did not alter the growth of these cells, suggesting that glioma cells rely on de novo lipid synthesis rather than scavenging them from the microenvironment. CONCLUSION Overexpression of IDH mutant gene altered lipid composition in U251 cells to enrich MUFA levels and we confirmed that D-2HG caused SCD1 upregulation in U251WT. We demonstrated the glioma cell growth requires SCD1 expression and the results of the present study may provide novel insights into the role of SCD1 in IDH mut gliomas growth.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
T Y Yamamoto ◽  
J E Endo ◽  
K S Shinmura ◽  
M S Sano ◽  
K F Fukuda

Abstract Background Obesity-induced lipotoxicity causes cardiac dysfunction in our modern lifestyle. Previously, we have shown that an increase in cardiomyocyte membrane saturated fatty acid (SFA)/ monounsaturated FA (MUFA) ratio mediates endoplasmic reticulum (ER) stress, which was implicated in the pathogenesis of SFA-induced cardiomyopathy. Furthermore, SFA supressed Sirt1/ stearoyl-CoA desaturase-1 (SCD1, converting enzyme from SFA to MUFA) signaling, which further worsened the membrane SFA/MUFA ratio. Purpose To evaluate the effectiveness of targeting membrane fatty acid composition by MUFA. Methods and results In wild-type mice, 16-weeks SFA-rich high lard diet feeding (HLD) caused activation of PPARα signaling and the accumulation of toxic lipid intermediates (diacylglycerol and ceramide) in the heart to the same extent as a MUFA-rich high olive oil diet feeding (HOD). However, only the HLD impaired Sirt1 activity, SCD1 expression, diastolic function (increased left ventricular end-diastolic pressure (LVEDP) and end-diastolic pressure-volume relationship (EDPVR)), and cardiac remodeling (hypertrophy and fibrosis). Lipidome analysis showed that HLD-induced diastolic dysfunction coincided with an increase in membrane SFA/MUFA ratio and ER stress induction. 8-weeks HOD after 8-weeks HLD (HOD switch) showed the same degree of obesity and PPARα activation with 16-weeks HLD. By contrast, HOD switched heart were less severe Sirt1/SCD1 signaling dysregulation, increased in membrane SFA/MUFA ratio, ER stress, and cardiomyopathy (hypertrophy, fibrosis, and diastolic dysfunction) compared to 16-weeks HLD. Moreover, in cardiomyocyte-specific Sirt1 knockout mice, HOD switched heart also showed less severe increase in membrane SFA/MUFA ratio, ER stress, and cardiomyopathy compared to 16-weeks HLD although decreased SCD1 expression was not changed. Conclusions We demonstrated that MUFA-rich diet counteracted SFA-induced Sirt1/SCD1 signaling dysregulation and prevented SFA-induced increase in membrane SFA/MUFA ratio. Hence, MUFA-rich diet antagonized SFA-induced ER stress and cardiomyopathy even if Sirt1 deactivated heart (e.g., aged heart). Targeting the cardiomyocyte membrane SFA/MUFA ratio by MUFA might have a new therapeutic potential for SFA-induced cardiomyopathy. FUNDunding Acknowledgement Type of funding sources: Public Institution(s). Main funding source(s): JSPS KAKENHI


PLoS Biology ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. e3000988
Author(s):  
Hiroyuki Mori ◽  
Colleen E. Dugan ◽  
Akira Nishii ◽  
Ameena Benchamana ◽  
Ziru Li ◽  
...  

Although visceral adipocytes located within the body’s central core are maintained at approximately 37°C, adipocytes within bone marrow, subcutaneous, and dermal depots are found primarily within the peripheral shell and generally exist at cooler temperatures. Responses of brown and beige/brite adipocytes to cold stress are well studied; however, comparatively little is known about mechanisms by which white adipocytes adapt to temperatures below 37°C. Here, we report that adaptation of cultured adipocytes to 31°C, the temperature at which distal marrow adipose tissues and subcutaneous adipose tissues often reside, increases anabolic and catabolic lipid metabolism, and elevates oxygen consumption. Cool adipocytes rely less on glucose and more on pyruvate, glutamine, and, especially, fatty acids as energy sources. Exposure of cultured adipocytes and gluteal white adipose tissue (WAT) to cool temperatures activates a shared program of gene expression. Cool temperatures induce stearoyl-CoA desaturase-1 (SCD1) expression and monounsaturated lipid levels in cultured adipocytes and distal bone marrow adipose tissues (BMATs), and SCD1 activity is required for acquisition of maximal oxygen consumption at 31°C.


2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. i3-i3
Author(s):  
Tomohiro Yamasaki ◽  
Adrian Lita ◽  
Lumin Zhang ◽  
Victor Ruiz Rodado ◽  
Tyrone Dowdy ◽  
...  

Abstract BACKGROUND Metabolic alterations of lipids have been identified as a hallmark of neoplasms, with the most prevalent being the balance between saturated fatty acid (SFA) and monosaturated fatty acid (MUFA). Stearoyl-CoA desaturase1 (SCD1), converting SFA to MUFA, is increased in many cancers, leading to worse prognosis. In glioma, the role of SCD1 remains unknown. Isocitrate dehydrogenase (IDH) mutations have been most commonly observed in glioma, but the involvement of mutant IDH in SCD1 expression also remains unknown. METHODS We conducted metabolic analysis to examine the alteration of SCD1 expression in genetically engineered glioma cell lines and normal human astrocyte (NHA). Lipid metabolic analysis was conducted by using LC-MS, Raman Imaging Microscopy and SCD1 expression was examined by Western-blotting and RT-PCR method. Electron microscopy was employed for organelle structure and genetic knock-down of SCD1 gene was performed. RESULT Herein, we uncovered increased MUFA and their phospholipids in Endoplasmic Reticulum (ER), generated by IDH1 mutation, that were responsible for Golgi and ER dilation. RNA seq data from The Cancer Genome Atlas, showed that SCD1 expression was significantly higher in IDH mutant gliomas compared with wild-type, and high SCD1 expression was associated with longer survival. Inhibition of IDH1 mutation or SCD1 silencing restored ER and Golgi morphology, while D-2HG and oleic acid induced morphological defects in these organelles. Moreover, addition of oleic acid, which tilts the balance towards elevated levels of MUFA, produced IDH1 mutant-specific cellular apoptosis. CONCLUSION Collectively, our results suggest that IDH1 mutant-induced SCD overexpression can rearrange the distribution of lipids in the organelles of glioma cells, providing a new insight on the link between lipids metabolism and organelle morphology in these cells, with potential and unique therapeutic implications. The results of the present study may also provide novel insights into the discovery of metabolic biomarkers for IDH mutant gliomas.


2020 ◽  
Vol 52 (2) ◽  
pp. 200-206 ◽  
Author(s):  
Hongfei Wang ◽  
Fangxiao Dong ◽  
Ye Wang ◽  
Xu’an Wang ◽  
Defei Hong ◽  
...  

Abstract Gallbladder cancer (GBC) is the most common and aggressive malignancy of the biliary tract. Betulinic acid (BetA) has been reported to have anti-inflammatory and antitumor effects; however, the effect of BetA on GBC is still unknown. In this study, we investigated the effect of BetA on five GBC cell lines and found that BetA significantly inhibited the proliferation of NOZ cells but had little inhibitory effect on other GBC cells. BetA disturbed mitochondrial membrane potential and induced apoptosis in NOZ cells. Real-time polymerase chain reaction analysis revealed that stearoyl-coenzyme A desaturase 1 (SCD1) was highly expressed in NOZ cells but low expressed in other GBC cells. BetA inhibited SCD1 expression in a concentration-dependent manner in NOZ cells. Downregulation of SCD1 expression by RNA interference inhibited the proliferation of NOZ cells and induced cell apoptosis. Moreover, BetA inhibited the growth of xenografted tumors and suppressed SCD1 expression in nude mice. Thus, our results showed that BetA induced apoptosis through repressing SCD1 expression in GBC, suggesting that BetA might be an effective agent for the treatment of patients with GBC that highly expresses SCD1.


2019 ◽  
Vol 52 (1) ◽  
Author(s):  
Guangchuan Wang ◽  
Zhen Li ◽  
Xiao Li ◽  
Chunqing Zhang ◽  
Lipan Peng

Abstract Background Recent studies have confirmed that RASAL1 has an antitumor effect in many cancers, but its functional role and the molecular mechanism underlying in colon cancer has not been investigated. Results We collected human colon cancer tissues and adjacent non-tumor tissues, human colon cancer cell lines LoVo, CaCo2, SW1116, SW480 and HCT-116, and normal colonic mucosa cell line NCM460. RT-qPCR was used to detect the RASAL1 level in the clinical tissues and cell lines. In LoVo and HCT-116, RASAL1 was artificially overexpressed. Cell viability and proliferation were measured using CCK-8 assays, and cell cycle was detected via PI staining and flow cytometry analysis. RASAL1 significantly inhibited the cell proliferation via inducing cell cycle arrest, suppressed cell cycle associated protein expression, and decreased the lipid content and inhibited the SCD1 expression. Moreover, SCD1 overexpression induced and downregulation repressed cell proliferation by causing cell cycle arrest. Additionally, luciferase reporter assays were performed to confirm the direct binding between SREBP1c, LXRα and SCD1 promoter, we also demonstrated that RASAL1 inhibit SCD1 3′-UTR activity. RASAL1 inhibited tumor growth in xenograft nude mice models and shows inhibitory effect of SCD1 expression in vivo. Conclusion Taken together, we concluded that RASAL1 inhibited colon cancer cell proliferation via modulating SCD1 activity through LXRα/SREBP1c pathway.


2019 ◽  
Vol 35 (3) ◽  
pp. 404-413
Author(s):  
Peng Shi ◽  
Ran Meng ◽  
Kai Liao ◽  
Shuang Li ◽  
Jiabao Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document