scholarly journals M1-like tumor-associated macrophages cascade a mesenchymal/stem-like phenotype of oral squamous cell carcinoma via the IL6/Stat3/THBS1 feedback loop

Author(s):  
Yuanhe You ◽  
Zhuowei Tian ◽  
Zhong Du ◽  
Kailiu Wu ◽  
Guisong Xu ◽  
...  

Abstract Background Tumor-associated macrophages (TAMs) have a leading position in the tumor microenvironment. Previously, we have demonstrated that M1-like TAMs activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma (OSCC). However, the functional roles and associated molecular mechanisms of the activated M1-like TAMs need to be further clarified in OSCC. Methods Conditioned Media (CM) were harvested from the exosome activated M1-like TAMs. We measured the malignant behaviors of OSCC under the treatment of CM from M1-like TAMs by performing colony forming assays, invasion assays, wound-healing assays, spheroid forming assays and in vivo xenograft experiments. The underlying mechanisms were investigated by RNA-seq, cytokines analysis, intracellular signaling pathway analysis, ChIP assays, bioinformatics analysis and validation. Results M1-like TAMs significantly promoted the epithelial-mesenchymal transition (EMT) process, and induced the cancer-stem like cells (CSCs) by upregulating the expression of MME and MMP14 in OSCC cells. Cytokine analysis revealed a shark increase of IL6 secretion from M1-like TAMs. Blocking IL6 in the CM from M1-like TAMs could significantly weaken its effects on the colony forming, invasion, migration, microsphere forming and xenograft forming abilities of OSCC cells. Cellular signaling assays indicated the activation of Jak/Stat3 pathway in the OSCC cells treated by the CM from M1-like TAMs. Blocking the activation of the Jak/Stat3 pathway could significantly weaken the effects of M1-like TAMs on the colony forming, invasion, migration, microsphere forming and xenograft forming abilities of OSCC cells. Further RNA-seq analysis and bioinformatics analysis revealed an increased expression of THBS1 in the OSCC cells treated by M1-like TAMs. Bioinformatics prediction and ChIP assays revealed the activation of Stat3 by CM from M1-like TAMs could directly promote the transcription of THBS1 in OSCC cells. Conclusions We proposed that M1-like TAMs could cascade a mesenchymal/stem-like phenotype of OSCC via the IL6/Stat3/THBS1 feedback loop. A better understanding on the functional roles and associated molecular mechanisms of M1-like TAMs might facilitate the development of novel therapies for supplementing the current treatment strategies for OSCC patients.

Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5944
Author(s):  
Jianfei Tang ◽  
Xiaodan Fang ◽  
Juan Chen ◽  
Haixia Zhang ◽  
Zhangui Tang

Oral squamous cell carcinoma (OSCC) is a type of malignancy with high mortality, leading to poor prognosis worldwide. However, the molecular mechanisms underlying OSCC carcinogenesis have not been fully understood. Recently, the discovery and characterization of long non-coding RNAs (lncRNAs) have revealed their regulatory importance in OSCC. Abnormal expression of lncRNAs has been broadly implicated in the initiation and progress of tumors. In this review, we summarize the functions and molecular mechanisms regarding these lncRNAs in OSCC. In addition, we highlight the crosstalk between lncRNA and tumor microenvironment (TME), and discuss the potential applications of lncRNAs as diagnostic and prognostic tools and therapeutic targets in OSCC. Notably, we also discuss lncRNA-targeted therapeutic techniques including CRISPR-Cas9 as well as immune checkpoint therapies to target lncRNA and the PD-1/PD-L1 axis. Therefore, this review presents the future perspectives of lncRNAs in OSCC therapy, but more research is needed to allow the applications of these findings to the clinic.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Ze-nan Zheng ◽  
Guang-zhao Huang ◽  
Qing-qing Wu ◽  
Heng-yu Ye ◽  
Wei-sen Zeng ◽  
...  

AbstractOral squamous cell carcinoma (OSCC) is the most common oral cancer. The molecular mechanisms of this disease are not fully understood. Our previous studies confirmed that dysregulated function of long non-coding RNA (lncRNA) AC007271.3 was associated with a poor prognosis and overexpression of AC007271.3 promoted cell proliferation, migration, invasion, and inhibited cell apoptosis in vitro, and promoted tumor growth in vivo. However, the underlying mechanisms of AC007271.3 dysregulation remained obscure. In this study, our investigation showed that AC007271.3 functioned as competing endogenous RNA by binding to miR-125b-2-3p and by destabilizing primary miR-125b-2, resulted in the upregulating expression of Slug, which is a direct target of miR-125b-2-3p. Slug also inhibited the expression of E-cadherin but N-cadherin, vimentin, and β-catenin had no obvious change. The expression of AC007271.3 was promoted by the canonical nuclear factor-κB (NF-κB) pathway. Taken together, these results suggested that the classical NF-κB pathway-activated AC007271.3 regulates EMT by miR-125b-2-3p/Slug/E-cadherin axis to promote the development of OSCC, implicating it as a novel potential target for therapeutic intervention in this disease.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e17572-e17572
Author(s):  
Daniel Sanghoon Shin ◽  
Eri Srivatsan ◽  
Hassan Nasser ◽  
Anela Tosevska ◽  
Jonathan Jacobs ◽  
...  

e17572 Background: Natural botanical drugs, such as curcumin, resveratrol and related flavonoids, are under clinical studies. Previous pilot study of curcumin, a polyphenol, for normal and patients with oral squamous cell carcinoma (OSCC) showed significant inhibition of inflammatory cytokines in saliva. Phase I investigation was performed on APG-157 to evaluate the potential utility an as oral drug for the treatment of OSCC. Methods: A double-blind, randomized, placebo-controlled phase I clinical trial was conducted with a botanical preparation containing a combination of curcumin related polyphenol molecules (pharmaceutical name APG-157). 12 Subjects with oral cancer and 13 normal control subjects were recruited. Two doses of the drug, 3x100 mg and 3x200 mg, were tested. The drug was administered orally each hour for 3 consecutive hours. Blood and saliva were collected pre-treatment and 1, 2, 3, and 24 hours post-treatment. Salivary cells and supernatants were analyzed for the expression of cytokines by multiplex ELISA and microbial content by 16S RNA sequence. Pre- and post-treatment tumor biopsies of one subject were studied for expression using the RNA seq and immunofluorescence (IF). Results: This study did not reveal any toxicity and there was a dose dependent inhibition of inflammatory cytokines, IL-1β, TNF-alpha and IL-8 in the salivary supernatant of cancer subjects treated with the drug. Tumor RNA-seq revealed down regulation of gene ontologies of cell adhesion, cell cycle and cell division and up regulation of generation of precursor metabolite/energy in the post-treatment tumor sample. Microbiome study showed significant decrease in Bacterioides after 24 hours of treatment. There was also a trend of decreasing Bacteroides among other cancer subjects treated with APG-157. IF showed a marked increase in the number of CD4, CD8 T cells in post-treatment tumor. PD-L1 expression was up-regulated in the post-treatment tumor sample. Conclusions: APG-157 is found to be safe and toxicity was not observed. The drug has shown a decrease in inflammatory cytokines. Moreover, there was a markedly increased CD4, CD8 T cells infiltration on a subject and decreased Bacteriodes microbial population after APG-157 treatment suggesting that it might have potential synergistic effect with immune checkpoint blockade immunotherapy. Decreased expression of cell growth related genes and increased expression of growth inhibitory genes pointed to a potential anti-tumor activity of APG-157.


ISRN Oncology ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Suttichai Krisanaprakornkit ◽  
Anak Iamaroon

Oral cancer is one of the drastic human cancers due to its aggressiveness and high mortality rate. Of all oral cancers, squamous cell carcinoma is the most common accounting for more than 90%. Epithelial-mesenchymal transition (EMT) is suggested to play an important role during cancer invasion and metastasis. Recently, emerging knowledge on EMT in carcinogenesis is explosive, tempting us to analyze previous studies on EMT in oral squamous cell carcinoma (OSCC). In this paper, we have first addressed the general molecular mechanisms of EMT, evidenced by alterations of cell morphology during EMT, the presence of cadherin switching, turning on and turning off of many specific genes, the activation of various signaling pathways, and so on. The remaining part of this paper will focus on recent findings of the investigations of EMT on OSCC. These include the evidence of EMT taking place in OSCC and the signaling pathways employed by OSCC cells during their invasion and metastasis. Collectively, with the large body of new knowledge on EMT in OSCC elaborated here, we are hopeful that targeting treatment for OSCC will be developed.


2020 ◽  
Vol 68 (7) ◽  
pp. 1282-1288
Author(s):  
Hui Li ◽  
Junhong Jiang

Oral squamous cell carcinoma (OSCC) is a lethal malignancy. It is reportedly demonstrated that long non-coding RNA (lncRNA) participates in the development of OSCC. The purpose of this study was to clarify the function and possible molecular mechanisms of lncRNA MCM3AP antisense RNA 1 (lncRNA MCM3AP-AS1) in OSCC. Quantitative real-time PCR (qRT-PCR) was adopted to investigate MCM3AP-AS1 expressions in OSCC tissues and cells. The proliferation, migration and invasion of HN-6 and SCC-9 cells were probed by cell counting kit-8 and Transwell assays, respectively. Dual luciferase reporter gene assay, Pearson’s correlation analysis, qRT-PCR and western blot were used to detect the binding relationship among miR-204-5 p, MCM3AP-AS1 and forkheadbox C1 (FOXC1). MCM3AP-AS1 expression was elevated in OSCC tissues and cell lines. Overexpression of MCM3AP-AS1 facilitated the proliferation, migration and invasion of OSCC cells, while the knockdown of MCM3AP-AS1 suppressed these malignant phenotypes. Besides, MCM3AP-AS1 impeded miR-204-5 p by binding with it. MCM3AP-AS1 could also upregulate the expression of FOXC1 via repressing miR-204-5 p.MCM3AP-AS1 promotes the progression of OSCC cells by adsorbing miR-204-5 p and upregulating FOXC1 expressions.


2021 ◽  
Author(s):  
Le Xu ◽  
Qingxiang Li ◽  
Yifei Wang ◽  
Lin Wang ◽  
Yuxing Guo ◽  
...  

Abstract Background: As the key enzyme of the N6-methyladenosine (m6A) in eukaryotic messenger RNA, METTL3 plays important roles in tumor progression, but the exact mechanism by which METTL3 controls oral squamous cell carcinoma (OSCC) progression remains unclear. Methods: METTL3 expression in OSCC samples was analyzed by qPCR and immunohistochemistry. The effects of METTL3 suppression on OSCC cell lines were measured by CCK-8, Ki-67 flow cytometry analysis, invasion transwell and wound healing assays. MeRIP-seq and RNA-seq analysis were performed to explore target gene of METTL3. RIP-qPCR and RNA stability assays were performed to explore the mechanism by which METTL3 regulated the target genes. Triptolide was used to evaluate its specific treatment effects on METTL3 in OSCC cells. BALB/c nude mice were used to establish orthotopic and subcutaneous xenograft models to verify the in vitro results.Results: METTL3 was upregulated in OSCC tissues than adjacent normal tissues, and its expression was associated with T stage, lymphatic metastasis and prognosis. In vitro and in vivo studies suggested that METTL3 suppression impaired cell proliferation, invasion, and migration. MeRIP-seq and RNA-seq analysis identified that SLC7A11 mRNA was the m6A target of METTL3, which was verified by meRIP-qPCR, qPCR and western blot. METTL3 depletion decreased the stability of SLC7A11 mRNA, and IGF2BP2 was involved in this process. Moreover, METTL3 knockdown attenuated the binding between SLC7A11 mRNA and IGF2BP2, finally leading to accelerate SLC7A11 mRNA degradation. Triptolide inhibited METTL3 and SLC7A11 expression in a dose-dependent manner, thus suppressing malignancy of OSCC cells. Conclusions: METTL3 enhances the mRNA stability of SLC7A11 via m6A-mediated binding of IGF2BP2, which thus promotes OSCC progression, and triptolide inhibits OSCC by suppressing METTL3-SLC7A11 axis.


Oral Diseases ◽  
2010 ◽  
Vol 17 (5) ◽  
pp. 462-468 ◽  
Author(s):  
E Jimi ◽  
H Furuta ◽  
K Matsuo ◽  
K Tominaga ◽  
T Takahashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document