scholarly journals RNA sequencing reveals metabolic and regulatory changes leading to more robust fermentation performance during short-term adaptation of Saccharomyces cerevisiae to lignocellulosic inhibitors

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Marlous van Dijk ◽  
Peter Rugbjerg ◽  
Yvonne Nygård ◽  
Lisbeth Olsson

Abstract Background The limited tolerance of Saccharomyces cerevisiae to inhibitors is a major challenge in second-generation bioethanol production, and our understanding of the molecular mechanisms providing tolerance to inhibitor-rich lignocellulosic hydrolysates is incomplete. Short-term adaptation of the yeast in the presence of dilute hydrolysate can improve its robustness and productivity during subsequent fermentation. Results We utilized RNA sequencing to investigate differential gene expression in the industrial yeast strain CR01 during short-term adaptation, mimicking industrial conditions for cell propagation. In this first transcriptomic study of short-term adaption of S. cerevisiae to lignocellulosic hydrolysate, we found that cultures respond by fine-tuned up- and down-regulation of a subset of general stress response genes. Furthermore, time-resolved RNA sequencing allowed for identification of genes that were differentially expressed at 2 or more sampling points, revealing the importance of oxidative stress response, thiamin and biotin biosynthesis. furan-aldehyde reductases and specific drug:H+ antiporters, as well as the down-regulation of certain transporter genes. Conclusions These findings provide a better understanding of the molecular mechanisms governing short-term adaptation of S. cerevisiae to lignocellulosic hydrolysate, and suggest new genetic targets for improving fermentation robustness.

2015 ◽  
Vol 65 (6) ◽  
pp. 444
Author(s):  
Ramesh C. Meena ◽  
Amitabha Chakrabarti

<p>The versatility of the yeast experimental model has aided in innumerable ways in the understanding of fundamental cellular functions and has also contributed towards the elucidation of molecular mechanisms underlying several pathological conditions in humans. Genome-wide expression, functional, localization and interaction studies on the yeast Saccharomyces cerevisiae exposed to various stressors have made profound contributions towards the understanding of stress response pathways. Analysis of gene expression data from S. cerevisiae cells indicate that the expression of a common set of genes is altered upon exposure to all the stress conditions examined. This common response to multiple stressors is known as the Environmental stress response. Knowledge gained from studies on the yeast model has now become helpful in understanding stress response pathways and associated disease conditions in humans. Cross-species microarray experiments and analysis of data with ever improving computational methods has led to a better comparison of gene expression data between diverse organisms that include yeast and humans.</p>


2010 ◽  
Vol 77 (3) ◽  
pp. 934-941 ◽  
Author(s):  
Daisuke Watanabe ◽  
Hong Wu ◽  
Chiemi Noguchi ◽  
Yan Zhou ◽  
Takeshi Akao ◽  
...  

ABSTRACTSake yeasts (strains ofSaccharomyces cerevisiae) produce high concentrations of ethanol in sake fermentation. To investigate the molecular mechanisms underlying this brewing property, we compared gene expression of sake and laboratory yeasts in sake mash. DNA microarray and reporter gene analyses revealed defects of sake yeasts in environmental stress responses mediated by transcription factors Msn2p and/or Msn4p (Msn2/4p) and stress response elements (STRE). Furthermore, we found that dysfunction ofMSN2and/orMSN4contributes to the higher initial rate of ethanol fermentation in both sake and laboratory yeasts. These results provide novel insights into yeast stress responses as major impediments of effective ethanol fermentation.


2019 ◽  
Vol 292 ◽  
pp. 121922 ◽  
Author(s):  
Marlous van Dijk ◽  
Borbála Erdei ◽  
Mats Galbe ◽  
Yvonne Nygård ◽  
Lisbeth Olsson

2008 ◽  
Vol 74 (20) ◽  
pp. 6358-6368 ◽  
Author(s):  
Francisco J. Pizarro ◽  
Michael C. Jewett ◽  
Jens Nielsen ◽  
Eduardo Agosin

ABSTRACT Laboratory strains of Saccharomyces cerevisiae have been widely used as a model for studying eukaryotic cells and mapping the molecular mechanisms of many different human diseases. Industrial wine yeasts, on the other hand, have been selected on the basis of their adaptation to stringent environmental conditions and the organoleptic properties that they confer to wine. Here, we used a two-factor design to study the responses of a standard laboratory strain, CEN.PK113-7D, and an industrial wine yeast strain, EC1118, to growth temperatures of 15°C and 30°C in nitrogen-limited, anaerobic, steady-state chemostat cultures. Physiological characterization revealed that the growth temperature strongly impacted the biomass yield of both strains. Moreover, we found that the wine yeast was better adapted to mobilizing resources for biomass production and that the laboratory yeast exhibited higher fermentation rates. To elucidate mechanistic differences controlling the growth temperature response and underlying adaptive mechanisms between the strains, DNA microarrays and targeted metabolome analysis were used. We identified 1,007 temperature-dependent genes and 473 strain-dependent genes. The transcriptional response was used to identify highly correlated gene expression subnetworks within yeast metabolism. We showed that temperature differences most strongly affect nitrogen metabolism and the heat shock response. A lack of stress response element-mediated gene induction, coupled with reduced trehalose levels, indicated that there was a decreased general stress response at 15°C compared to that at 30°C. Differential responses among strains were centered on sugar uptake, nitrogen metabolism, and expression of genes related to organoleptic properties. Our study provides global insight into how growth temperature affects differential physiological and transcriptional responses in laboratory and wine strains of S. cerevisiae.


Author(s):  
Jean Vroomen ◽  
Paul Bertelson ◽  
Ilja Frissen ◽  
Beatrice De Gelder

Author(s):  
O. Yu. Atkov ◽  
S. G. Gorokhova

The individual dynamics of the allostatic load index was revealed mainly due to changes in the glucose level, body mass index, which makes it applicable for assessing the short-term adaptation to the stay in the conditions of shift work


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kolja Becker ◽  
Holger Klein ◽  
Eric Simon ◽  
Coralie Viollet ◽  
Christian Haslinger ◽  
...  

AbstractDiabetic Retinopathy (DR) is among the major global causes for vision loss. With the rise in diabetes prevalence, an increase in DR incidence is expected. Current understanding of both the molecular etiology and pathways involved in the initiation and progression of DR is limited. Via RNA-Sequencing, we analyzed mRNA and miRNA expression profiles of 80 human post-mortem retinal samples from 43 patients diagnosed with various stages of DR. We found differentially expressed transcripts to be predominantly associated with late stage DR and pathways such as hippo and gap junction signaling. A multivariate regression model identified transcripts with progressive changes throughout disease stages, which in turn displayed significant overlap with sphingolipid and cGMP–PKG signaling. Combined analysis of miRNA and mRNA expression further uncovered disease-relevant miRNA/mRNA associations as potential mechanisms of post-transcriptional regulation. Finally, integrating human retinal single cell RNA-Sequencing data revealed a continuous loss of retinal ganglion cells, and Müller cell mediated changes in histidine and β-alanine signaling. While previously considered primarily a vascular disease, attention in DR has shifted to additional mechanisms and cell-types. Our findings offer an unprecedented and unbiased insight into molecular pathways and cell-specific changes in the development of DR, and provide potential avenues for future therapeutic intervention.


2021 ◽  
Vol 22 (11) ◽  
pp. 5713
Author(s):  
Yiping Zhang ◽  
Li Zhang ◽  
Hai Ma ◽  
Yichu Zhang ◽  
Xiuming Zhang ◽  
...  

APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play important roles in plant development and stress response. Although AP2/ERF genes have been extensively investigated in model plants such as Arabidopsis thaliana, little is known about their role in biotic stress response in perennial fruit tree crops such as apple (Malus × domestica). Here, we investigated the role of MdERF100 in powdery mildew resistance in apple. MdERF100 localized to the nucleus but showed no transcriptional activation activity. The heterologous expression of MdERF100 in Arabidopsis not only enhanced powdery mildew resistance but also increased reactive oxygen species (ROS) accumulation and cell death. Furthermore, MdERF100-overexpressing Arabidopsis plants exhibited differential expressions of genes involved in jasmonic acid (JA) and salicylic acid (SA) signaling when infected with the powdery mildew pathogen. Additionally, yeast two-hybrid and bimolecular fluorescence complementation assays confirmed that MdERF100 physically interacts with the basic helix–loop–helix (bHLH) protein MdbHLH92. These results suggest that MdERF100 mediates powdery mildew resistance by regulating the JA and SA signaling pathways, and MdbHLH92 is involved in plant defense against powdery mildew. Overall, this study enhances our understanding of the role of MdERF genes in disease resistance, and provides novel insights into the molecular mechanisms of powdery mildew resistance in apple.


Sign in / Sign up

Export Citation Format

Share Document