scholarly journals Culex pipiens and Culex restuans egg rafts harbor diverse bacterial communities compared to their midgut tissues

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Elijah O. Juma ◽  
Chang-Hyun Kim ◽  
Christopher Dunlap ◽  
Brian F. Allan ◽  
Chris M. Stone

Abstract Background The bacterial communities associated with mosquito eggs are an essential component of the mosquito microbiota, yet there are few studies characterizing and comparing the microbiota of mosquito eggs to other host tissues. Methods We sampled gravid female Culex pipiens L. and Culex restuans Theobald from the field, allowed them to oviposit in the laboratory, and characterized the bacterial communities associated with their egg rafts and midguts for comparison through MiSeq sequencing of the 16S rRNA gene. Results Bacterial richness was higher in egg rafts than in midguts for both species, and higher in Cx pipiens than Cx. restuans. The midgut samples of Cx. pipiens and Cx. restuans were dominated by Providencia. Culex pipiens and Cx. restuans egg rafts samples were dominated by Ralstonia and Novosphingobium, respectively. NMDS ordination based on Bray-Curtis distance matrix revealed that egg-raft samples, or midgut tissues harbored similar bacterial communities regardless of the mosquito species. Within each mosquito species, there was a distinct clustering of bacterial communities between egg raft and midgut tissues. Conclusion These findings expand the list of described bacterial communities associated with Cx. pipiens and Cx. restuans and the additional characterization of the egg raft bacterial communities facilitates comparative analysis of mosquito host tissues, providing a basis for future studies seeking to understand any functional role of the bacterial communities in mosquito biology.

2020 ◽  
Author(s):  
Elijah O. Juma ◽  
Chang-Hyun Kim ◽  
Christopher Dunlap ◽  
Brian F. Allan ◽  
Chris M. Stone

AbstractBackgroundThe bacterial communities associated with mosquito eggs are an essential component of the mosquito microbiota, yet there are few studies characterizing and comparing the microbiota of mosquito eggs to other host tissues.MethodsWe sampled gravid female Culex pipiens and Culex restuans from the field, allowed them to oviposit in the laboratory, and characterized the microbiota associated with their egg rafts and midguts for comparison through MiSeq sequencing of the 16S rRNA gene.ResultsBacterial richness was higher in egg rafts than in midguts for both species, and higher in Cx pipiens L. than Cx. restuans. The midgut samples of Cx. pipiens and Cx. restuans were dominated by Providencia. Culex pipiens L. and Cx. restuans egg rafts samples were dominated by Ralstonia and Novosphingobium, respectively. NMDS ordination based on Bray-Curtis distance matrix revealed that egg raft samples, or midgut tissues harbored similar bacterial communities regardless of the mosquito species. Within each mosquito species, there were distinct clustering of bacterial communities between egg raft and midgut tissues.ConclusionThese findings expand the list of described bacterial communities associated with Cx. pipiens L. and Cx. restuans and the additional characterization of the egg raft bacterial communities facilitates comparative analysis of mosquito host tissues, providing a basis for future studies seeking to understand any functional role of microbiota in mosquito biology.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Justin Maire ◽  
Linda L. Blackall ◽  
Madeleine J. H. van Oppen

Abstract Background Coral reefs are among the most diverse and productive ecosystems on Earth. This success relies on the coral’s association with a wide range of microorganisms, including dinoflagellates of the family Symbiodiniaceae that provide coral hosts with most of their organic carbon requirements. While bacterial associates have long been overlooked, research on these microorganisms is gaining traction, and deciphering bacterial identity and function is greatly enhancing our understanding of cnidarian biology. Here, we investigated bacterial communities in defensive tissues (acontia) of the coral model, the sea anemone Exaiptasia diaphana. Acontia are internal filaments that are ejected upon detection of an external threat and release toxins to repel predators. Results Using culturing techniques and 16S rRNA gene metabarcoding we identified bacterial communities associated with acontia of four Great Barrier Reef-sourced E. diaphana genotypes. We show that bacterial communities are similar across genotypes, and dominated by Alteromonadaceae, Vibrionaceae, Rhodobacteraceae, and Saprospiraceae. By analyzing abundant amplicon sequence variants (ASVs) from metabarcoding data from acontia and comparing these to data from whole anemones, we identified five potentially important bacterial genera of the acontia microbiome: Vibrio, Sulfitobacter, Marivita, Alteromonas, and Lewinella. The role of these bacteria within the acontia remains uninvestigated but could entail assistance in defense processes such as toxin production. Conclusions This study provides insight into potential bacterial involvement in cnidarian defense tissues and highlights the need to study bacterial communities in individual compartments within a holobiont.


2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Rashid Pervez ◽  
Showkat Ahmad Lone ◽  
Sasmita Pattnaik

Abstract Background Entomopathogenic nematodes (EPNs) harboring symbiotic bacteria are one of the safest alternatives to the chemical insecticides for the control of various insect pests. Infective juveniles of EPNs locate a target insect, enter through the openings, and reach the hemocoel, where they release the symbiotic bacteria and the target gets killed by the virulence factors of the bacteria. Photorhabdus with Heterorhabditis spp. are well documented; little is known about the associated bacteria. Main body In this study, we explored the presence of symbiotic and associated bacteria from Heterorhabditis sp. (IISR-EPN 09) and characterized by phenotypic, biochemical, and molecular approaches. Six bacterial isolates, belonging to four different genera, were recovered and identified as follows: Photorhabdus luminescens, one each strain of Providencia vermicola, Pseudomonas entomophila, Alcaligenes aquatilis, and two strains of Alcaligenes faecalis based on the phenotypic, biochemical criteria and the sequencing of 16S rRNA gene. Conclusion P. luminescens is symbiotically associated with Heterorhabditis sp. (IISR-EPN 09), whereas P. vermicola, P. entomophila, A. aquatilis, and A. faecalis are the associated bacteria. Further studies are needed to determine the exact role of the bacterial associates with the Heterorhabditis sp.


LWT ◽  
2021 ◽  
Vol 147 ◽  
pp. 111579
Author(s):  
Creciana M. Endres ◽  
Ícaro Maia S. Castro ◽  
Laura D. Trevisol ◽  
Juliana M. Severo ◽  
Michele B. Mann ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 396
Author(s):  
Ewa Sajnaga ◽  
Marcin Skowronek ◽  
Agnieszka Kalwasińska ◽  
Waldemar Kazimierczak ◽  
Karolina Ferenc ◽  
...  

This study focused on the potential relationships between midgut microbiota of the common cockchafer Melolontha melolontha larvae and their resistance to entomopathogenic nematodes (EPN) infection. We investigated the bacterial community associated with control and unsusceptible EPN-exposed insects through nanopore sequencing of the 16S rRNA gene. Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were the most abundant bacterial phyla within the complex and variable midgut microbiota of the wild M. melolontha larvae. The core microbiota was found to include 82 genera, which accounted for 3.4% of the total number of identified genera. The EPN-resistant larvae differed significantly from the control ones in the abundance of many genera belonging to the Actinomycetales, Rhizobiales, and Clostridiales orders. Additionally, the analysis of the microbiome networks revealed different sets of keystone midgut bacterial genera between these two groups of insects, indicating differences in the mutual interactions between bacteria. Finally, we detected Xenorhabdus and Photorhabdus as gut residents and various bacterial species exhibiting antagonistic activity against these entomopathogens. This study paves the way to further research aimed at unravelling the role of the host gut microbiota on the output of EPN infection, which may contribute to enhancement of the efficiency of nematodes used in eco-friendly pest management.


Author(s):  
Xun Kang ◽  
Yanhong Wang ◽  
Siping Li ◽  
Xiaomei Sun ◽  
Xiangyang Lu ◽  
...  

The midgut microbial community composition, structure, and function of field-collected mosquitoes may provide a way to exploit microbial function for mosquito-borne disease control. However, it is unclear how adult mosquitoes acquire their microbiome, how the microbiome affects life history traits and how the microbiome influences community structure. We analyzed the composition of 501 midgut bacterial communities from field-collected adult female mosquitoes, including Aedes albopictus, Aedes galloisi, Culex pallidothorax, Culex pipiens, Culex gelidus, and Armigeres subalbatus, across eight habitats using the HiSeq 4000 system and the V3−V4 hyper-variable region of 16S rRNA gene. After quality filtering and rarefaction, a total of 1421 operational taxonomic units, belonging to 29 phyla, 44 families, and 43 genera were identified. Proteobacteria (75.67%) were the most common phylum, followed by Firmicutes (10.38%), Bacteroidetes (6.87%), Thermi (4.60%), and Actinobacteria (1.58%). The genera Rickettsiaceae (33.00%), Enterobacteriaceae (20.27%), Enterococcaceae (7.49%), Aeromonadaceae (7.00%), Thermaceae (4.52%), and Moraxellaceae (4.31%) were dominant in the samples analyzed and accounted for 76.59% of the total genera. We characterized the midgut bacterial communities of six mosquito species in Hainan province, China. The gut bacterial communities were different in composition and abundance, among locations, for all mosquito species. There were significant differences in the gut microbial composition between some species and substantial variation in the gut microbiota between individuals of the same mosquito species. There was a marked variation in different mosquito gut microbiota within the same location. These results might be useful in the identification of microbial communities that could be exploited for disease control.


2020 ◽  
Vol 222 ◽  
pp. 02050
Author(s):  
Marat Lutfulin ◽  
Darya Zaripova ◽  
Oksana Moiseeva ◽  
Semen Vologin ◽  
Ayslu Mardanova

Identification of patterns of formation of bacterial communities of the rhizosphere and rhizoplane of potato (Solanum tuberosum L.), the most important agricultural crop, is necessary for the introduction and maintenance of sustainable organic farming. The purpose of this work was the study of the biodiversity of the bacterial microbiota of the rhizosphere and rhizoplane of Early Zhukovsky potato, cultivated on gray forest soils. Comparative analysis based on sequencing of the 16S R RNA gene showed a significant difference in the representation of different groups of bacteria in these potato root compartments. Thus, the proportions of the dominant bacteria in the rhizosphere and rhizoplane of the Proteobacteria phylum reach 47.66% ± 7.22 % and 86.35 % ± 0.53%, respectively (P < 0.05). In contrast, the representation of phylum Bacteroidetes and Firmicutes in the rhizosphere is significantly higher and reaches 41.45 % ± 10.42% and 6.49 % ± 3.23%, respectively, compared to the rhizoplane (7.84 % ± 1.24 % and 0.43 % ± 0.48 %, (P < 0.05). At the same time, Actinobacteria phylum bacteria are present in both compartments in approximately equal amounts (4.40 % ± 1.81% in the rhizosphere and 5.37 % ± 1.42% in the rhizoplane). Thus, it was found that potato forms different bacterial communities in the rhizosphere and rhizoplane in quantitative proportions, which is probably determined by the functional role of these microorganisms in the plant physiology.


2019 ◽  
Author(s):  
Creciana Maria Endres ◽  
Ícaro Maia Santos de Castro ◽  
Laura Delpino Trevisol ◽  
Michele Bertoni Mann ◽  
Ana Paula Muterle Varela ◽  
...  

AbstractThe production of sheep’s milk cheese has grown in recent years since it is a high value-added product with excellent properties. As such, it is necessary to provide data on the microbiota and organoleptic characteristics of this product, as well as the influence of these microorganisms on public health. Thus, the aim of the present study was to characterize the microbial community of different types of sheep cheeses using high-throughput sequencing of the 16S rRNA gene. The study was conducted with four groups of cheese: colonial, fresh, feta, and pecorino (n = 5 samples per group). The high-throughput 16S rRNA amplicon sequencing revealed 55 operational taxonomic units in the 20 samples, representing 9 genera of the two bacterial phyla Firmicutes and Proteobacteria. The predominant genera in the samples were Streptococcus and Lactobacillus. When evaluating alpha diversity by the indexes of Simpson, Chao1, Shannon, and Skew no significant differences were observed between the groups. Evaluating of the beta diversity using Bray-Curtis dissimilarity, the group of colonial cheeses presented a significant difference when compared to the feta (q = 0.030) and pecorino groups (q = 0.030). Additionally, the fresh group differed from the pecorino group (q = 0.030). The unweighted Unifrac distance suggests that the colonial cheese group differed from the others. Moreover, the feta cheese group differed from the fresh group. The distance-weighted Unifrac suggests that no significance exists between the groups. According to this information, the microbiota characterization of these cheese groups was useful in demonstrating the bacterial communities belonging to each group, its effects on processing, elaboration, maturation, and public health.


2009 ◽  
Vol 58 (4) ◽  
pp. 509-516 ◽  
Author(s):  
Johan Dicksved ◽  
Mathilda Lindberg ◽  
Magnus Rosenquist ◽  
Helena Enroth ◽  
Janet K. Jansson ◽  
...  

Persistent infection of the gastric mucosa by Helicobacter pylori can initiate an inflammatory cascade that progresses into atrophic gastritis, a condition associated with reduced capacity for secretion of gastric acid and an increased risk of developing gastric cancer. The role of H. pylori as an initiator of inflammation is evident but the mechanism for development into gastric cancer has not yet been proven. A reduced capacity for gastric acid secretion allows survival and proliferation of other microbes that normally are killed by the acidic environment. It has been postulated that some of these species may be involved in the development of gastric cancer; however, their identities are poorly defined. In this study, the gastric microbiota from ten patients with gastric cancer was characterized and compared with that from five dyspeptic controls using the molecular profiling approach terminal restriction fragment length polymorphism (T-RFLP), in combination with 16S rRNA gene cloning and sequencing. T-RFLP analysis revealed a complex bacterial community in the cancer patients that was not significantly different from that in the controls. Sequencing of 140 clones revealed 102 phylotypes, with representatives from five bacterial phyla (Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria and Fusobacteria). The data revealed a relatively low abundance of H. pylori and showed that the gastric cancer microbiota was instead dominated by different species of the genera Streptococcus, Lactobacillus, Veillonella and Prevotella. The respective role of these species in development of gastric cancer remains to be determined.


Sign in / Sign up

Export Citation Format

Share Document