scholarly journals Cellular and humoral peritoneal immunity to Mesocestoides vogae metacestode infection in mice

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Terézia Mačak Kubašková ◽  
Dagmar Mudroňová ◽  
Miroslava Vargová ◽  
Katarína Reiterová ◽  
Gabriela Hrčková

Abstract Background Here, Mesocestoides (M.) vogae infection in mice is proposed as a suitable experimental model for studying the immunity in the peritoneal cavity of mice. Methods To investigate the kinetics of immune parameters in M. vogae-infected mice, we detected, using flow cytometry, the expression of selected lymphoid and myeloid markers within the peritoneal cell population at day 0, 3, 6, 10, 14, 19, 25, 30 and 35 post-infection. Then, using ELISA, we analyzed the cytokine IFN-γ, TGF-β, IL-4 and IL-10 responses and the levels of anti-M. vogae IgG and IgM antibodies in the peritoneal lavage fluid. Cells isolated from the peritoneal cavity were subjected to further molecular analysis. To assess cell activation, peritoneal cells were exposed to LPS, and culture supernatants were collected and assayed for the level of cytokines and production of nitrite. Ly6C+ and Ly6G+ cells were isolated using MACS from the peritoneal cells at day 35 post-infection. Both MACS-isolated subsets were co-cultured with preactivated T cells to measure their suppressive capacity. Next, the role of parasite excretory-secretory antigens in induction of CD11b+ myeloid cells with the suppressive phenotype and the production of IL-10 was examined. Results In the peritoneal cavity an initial increase of CD11b+Gr-1+F4/80highMHC IIhigh cells, NK, NKT cells and CD8+ cytotoxic T cells was observed in the first week of infection. At day 14 post-infection, an increase in the number of myeloid CD11b+Gr-1+ cells was detected, and most of this cell population expressed low levels of F4/80 and MHC II in later stages of infection, suggesting the impairment of antigen-presenting cell functions, probably through the excretory-secretory molecules. Moreover, we confirmed that peritoneal Gr1+ cells (Ly6C+ and Ly6G+ population) are phenotypically and functionally consistent with myeloid-derived suppressor cells. Metacestode infection elicited high levels of IL-10 and upregulated STAT-3 in peritoneal cells. A higher level of IgM suggests that this isotype may be predominant and is involved in the host protection. Conclusions Mesocestoides vogae tetrathyridia induced the recruitment of immunosuppressive cell subsets, which may play a key role in the downregulation of immune response in long-term parasitic diseases, and excretory-secretory antigens seem to be the main regulatory factor.

2020 ◽  
Author(s):  
Terézia Mačák Kubašková ◽  
Dagmar Mudroňová ◽  
Miroslava Vargová ◽  
Katarína Reiterová ◽  
Gabriele Hrčková

Abstract Background: Here, Mesocestoides (M.) vogae infection in mice is proposed as a suitable experimental model for studying the immunity in the peritoneal cavity of mice. Methods: To investigate the kinetics of immune parameters in M. vogae-infected mice, we detected, using flow cytometry, the expression of selected lymphoid and myeloid markers within the peritoneal cell population at day 0, 3, 6, 10, 14, 19, 25, 30 and 35 post-infection. Then, using ELISA, we analyzed the cytokine IFN-γ, TGF-β, IL-4 and IL-10 responses and the levels of anti-M. vogae IgG and IgM antibodies in the peritoneal lavage fluid. Cells isolated from peritoneal cavity were subjected to further molecular analysis. To assess cell activation, peritoneal cells were exposed to LPS, and culture supernatants were collected and assayed for the level of cytokines and production of nitrite. Ly6C+ and Ly6G+ cells were isolated using MACS from the peritoneal cells at day 35 post-infection. Both MACS-isolated subsets were co-cultured with preactivated T cells to measure their suppressive capacity. Next, the role of parasite excretory-secretory antigens on induction of CD11b+ myeloid cells with the suppressive phenotype and the production of IL-10 was examined.Results: In the peritoneal cavity an initial increase of CD11b+Gr-1+F4/80highMHCIIhigh cells, NK, NKT cells and CD8+ cytotoxic T cells was observed in the first week of infection. At day 14 post-infection, an increase in the number of myeloid CD11b+Gr-1+ cells was detected, and most of this cell population expressed low levels of F4/80 and MHC II in later stages of infection, suggesting the impairment of antigen-presenting cell functions, probably through the excretory-secretory molecules. Moreover, we confirmed that peritoneal Gr1+ cells (Ly6C+ and Ly6G+ population) are phenotypically and functionally consistent with myeloid-derived suppressor cells. Metacestode infection elicited high levels of IL-10 and up-regulated of STAT-3 in peritoneal cells. A higher level of IgM suggests that this isotype may be predominant and involved in host protection.Conclusions: M. vogae tetrathyridia induced the recruitment of immunosuppressive cell subsets, which may play a key role in the down-regulation of immune response in long-term parasitic diseases, and excretory-secretory antigens seem to be the main regulatory factor.


2020 ◽  
Author(s):  
Terézia Mačák Kubašková ◽  
Dagmar Mudroňová ◽  
Miroslava Vargová ◽  
Katarína Reiterová ◽  
Gabriela Hrckova

Abstract BackgroundHere, Mesocestoides (M.) vogae infection in mice is proposed as a suitable experimental model for studying the immunity in the peritoneal cavity of mice. MethodsTo investigate the kinetics of immune parameters in M. vogae-infected mice, we detected, using flow cytometry, the expression of selected lymphoid and myeloid markers within the peritoneal cell population at day 0, 3, 6, 10, 14, 19, 25, 30 and 35 post-infection. Then, using ELISA, we analyzed the cytokine IFN-γ, TGF-β, IL-4 and IL-10 responses and the levels of anti-M. vogae IgG and IgM antibodies in the peritoneal lavage fluid. Cells isolated from peritoneal cavity were subjected to further molecular analysis. To assess cell activation, peritoneal cells were exposed to LPS, and culture supernatants were collected and assayed for the level of cytokines and production of nitrite. Ly6C+ and Ly6G+ cells were isolated using MACS from the peritoneal cells at day 35 post-infection. Both MACS-isolated subsets were co-cultured with preactivated T cells to measure their suppressive capacity. Next, the role of parasite excretory-secretory antigens on induction of CD11b+ myeloid cells with the suppressive phenotype and the production of IL-10 was examined.ResultsIn the peritoneal cavity an initial increase of CD11b+Gr-1+F4/80highMHCIIhigh cells, NK, NKT cells and CD8+ cytotoxic T cells was observed in the first week of infection. At day 14 post-infection, an increase in the number of myeloid CD11b+Gr-1+ cells was detected, and most of this cell population expressed low levels of F4/80 and MHC II in later stages of infection, suggesting the impairment of antigen-presenting cell functions, probably through the excretory-secretory molecules. Moreover, we confirmed that peritoneal Gr1+ cells (Ly6C+ and Ly6G+ population) are phenotypically and functionally consistent with myeloid-derived suppressor cells. Metacestode infection elicited high levels of IL-10 and up-regulated of STAT-3 in peritoneal cells. A higher level of IgM suggests that this isotype may be predominant and is involved in the host protection.ConclusionsM. vogae tetrathyridia induced the recruitment of immunosuppressive cell subsets, which may play a key role in the down-regulation of immune response in long-term parasitic diseases, and excretory-secretory antigens seem to be the main regulatory factor.


2020 ◽  
Author(s):  
Terézia Mačák Kubašková ◽  
Dagmar Mudroňová ◽  
Miroslava Vargová ◽  
Katarína Reiterová ◽  
Gabriela Hrckova

Abstract Background Here, Mesocestoides (M.) vogae infection in mice is proposed as a suitable experimental model for studying the immunity in the peritoneal cavity of mice. Methods To investigate the kinetics of immune parameters in M. vogae-infected mice, we detected, using flow cytometry, the expression of selected lymphoid and myeloid markers within the peritoneal cell population at day 0, 3, 6, 10, 14, 19, 25, 30 and 35 post-infection. Then, using ELISA, we analyzed the cytokine IFN-γ, TGF-β, IL-4 and IL-10 responses and the levels of anti-M. vogae IgG and IgM antibodies in the peritoneal lavage fluid. Cells isolated from peritoneal cavity were subjected to further molecular analysis. To assess cell activation, peritoneal cells were exposed to LPS, and culture supernatants were collected and assayed for the level of cytokines and production of nitrite. Ly6C+ and Ly6G+ cells were isolated using MACS from the peritoneal cells at day 35 post-infection. Both MACS-isolated subsets were co-cultured with preactivated T cells to measure their suppressive capacity. Next, the role of parasite excretory-secretory antigens on induction of CD11b+ myeloid cells with the suppressive phenotype and the production of IL-10 was examined.Results In the peritoneal cavity an initial increase of CD11b+Gr-1+F4/80highMHCIIhigh cells, NK, NKT cells and CD8+ cytotoxic T cells was observed in the first week of infection. At day 14 post-infection, an increase in the number of myeloid CD11b+Gr-1+ cells was detected, and most of this cell population expressed low levels of F4/80 and MHC II in later stages of infection, suggesting the impairment of antigen-presenting cell functions, probably through the excretory-secretory molecules. Moreover, we confirmed that peritoneal Gr1+ cells (Ly6C+ and Ly6G+ population) are phenotypically and functionally consistent with myeloid-derived suppressor cells. Metacestode infection elicited high levels of IL-10 and up-regulated of STAT-3 in peritoneal cells. A higher level of IgM suggests that this isotype may be predominant and is involved in the host protection.Conclusions M. vogae tetrathyridia induced the recruitment of immunosuppressive cell subsets, which may play a key role in the down-regulation of immune response in long-term parasitic diseases, and excretory-secretory antigens seem to be the main regulatory factor.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Atar Lev ◽  
Amos J. Simon ◽  
Luba Trakhtenbrot ◽  
Itamar Goldstein ◽  
Meital Nagar ◽  
...  

Introduction. Patients with severe combined immunodeficiency (SCID) may present with residual circulating T cells. While all cells are functionally deficient, resulting in high susceptibility to infections, only some of these cells are causing autoimmune symptoms.Methods. Here we compared T-cell functions including the number of circulating CD3+T cells,in vitroresponses to mitogens, T-cell receptor (TCR) repertoire, TCR excision circles (TREC) levels, and regulatory T cells (Tregs) enumeration in several immunodeficinecy subtypes, clinically presenting with nonreactive residual cells (MHC-II deficiency) or reactive cells. The latter includes patients with autoreactive clonal expanded T cell and patients with alloreactive transplacentally maternal T cells.Results. MHC-II deficient patients had slightly reduced T-cell function, normal TRECs, TCR repertoires, and normal Tregs enumeration. In contrast, patients with reactive T cells exhibited poor T-cell differentiation and activity. While the autoreactive cells displayed significantly reduced Tregs numbers, the alloreactive transplacentally acquired maternal lymphocytes had high functional Tregs.Conclusion. SCID patients presenting with circulating T cells show different patterns of T-cell activity and regulatory T cells enumeration that dictates the immunodeficient and autoimmune manifestations. We suggest that a high-tolerance capacity of the alloreactive transplacentally acquired maternal lymphocytes represents a toleration advantage, yet still associated with severe immunodeficiency.


2020 ◽  
Author(s):  
Tao Lin ◽  
Tingting Geng ◽  
Andrew Harrison ◽  
Duomeng Yang ◽  
Anthony T. Vella ◽  
...  

AbstractArthritogenic alphaviruses such as Chikungunya virus and O’nyong nyong virus cause acute and chronic crippling arthralgia associated with inflammatory immune responses. However, the physiological functions of individual immune signaling pathways in the pathogenesis of alphaviral arthritis remain poorly understood. Here we report that a deficiency in the stimulator-of-interferon-genes (STING) led to enhanced viral loads, exacerbated inflammation and selectively elevated expression of CXCL10, a chemoattractant for monocytes/macrophages/T cells, in mouse feet. Cxcl10-/- mice had the same viremia as wild-type animals, but fewer immune infiltrates and lower viral loads in footpads at the peak of arthritic disease (6-8 days post infection). Macrophages constituted the largest immune cell population in footpads following infection, which were significantly reduced in Cxcl10-/- mice. The viral RNA loads in neutrophils and macrophages were reduced in Cxcl10-/- compared to wild-type mice. In summary, our results demonstrate that STING signaling represses, while CXCL10 signaling promotes, pathogenesis of alphaviral disease.


2021 ◽  
Vol 22 (5) ◽  
pp. 2476
Author(s):  
Kento Fujiwara ◽  
Masaki Kitaura ◽  
Ayaka Tsunei ◽  
Hotaka Kusabuka ◽  
Erika Ogaki ◽  
...  

T cells that are genetically engineered to express chimeric antigen receptor (CAR) have a strong potential to eliminate tumor cells, yet the CAR-T cells may also induce severe side effects due to an excessive immune response. Although optimization of the CAR structure is expected to improve the efficacy and toxicity of CAR-T cells, the relationship between CAR structure and CAR-T cell functions remains unclear. Here, we constructed second-generation CARs incorporating a signal transduction domain (STD) derived from CD3ζ and a 2nd STD derived from CD28, CD278, CD27, CD134, or CD137, and investigated the impact of the STD structure and signaling on CAR-T cell functions. Cytokine secretion of CAR-T cells was enhanced by 2nd STD signaling. T cells expressing CAR with CD278-STD or CD137-STD proliferated in an antigen-independent manner by their STD tonic signaling. CAR-T cells incorporating CD28-STD or CD278-STD between TMD and CD3ζ-STD showed higher cytotoxicity than first-generation CAR or second-generation CARs with other 2nd STDs. The potent cytotoxicity of these CAR-T cells was not affected by inhibiting the 2nd STD signals, but was eliminated by placing the STDs after the CD3ζ-STD. Our data highlighted that CAR activity was affected by STD structure as well as by 2nd STD signaling.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A873-A873
Author(s):  
Arika Feils ◽  
Mackenzie Heck ◽  
Anna Hoefges ◽  
Peter Carlson ◽  
Luke Zangl ◽  
...  

BackgroundMice bearing B78 melanoma tumors can be cured using an in situ vaccine (ISV) regimen that includes radiation (RT) together with immunocytokine (tumor-targeting mAb conjugated to IL-2). B78 melanoma cells, derived from B16 cells, express minimal to no MHC-I but express MHC-II upon IFN-g/TNF-a stimulation. Although B78 cells are primarily MHC-I-deficient, an increased CD8 T cell infiltration into the tumor microenvironment (TME) has been shown following ISV.1 To further investigate the potential role of specific immune cell lineages in the B78 anti-tumor response to ISV, immune subset depletion studies and flow cytometric analyses were performed.MethodsC57BL/6 mice bearing B78 tumors were depleted of immune cell subsets with mAbs (anti-CD4, anti-CD8, anti-NK1.1, or Rat IgG control) for 3 weeks during the course of treatment. Treatment groups included no treatment, RT (12 Gy), or ISV (RT D0 and immunocytokine D5-D9). 6 mice/group (repeated three times) were followed for survival/tumor growth, and flow cytometry studies included 4 mice/group, sacrificed on D8 and D13 following the start of ISV.ResultsMice depleted of CD4 T cells during the course of ISV showed a significant reduction of anti-tumor effect as compared to mice treated with ISV/Rat IgG (pConclusionsThese studies suggest that CD4 T cells are essential for an anti-tumor response in the B78 melanoma model. In vivo depletion data show that CD4 T cells, but not CD8 or NK cells, are required for a decrease in tumor growth via ISV. Flow cytometric analyses suggest an interplay between CD4 and CD8 T cells as indicated by a decrease in CD8/IFN-g expression following ISV in the absence of CD4 T cells. The role that MHC-I and MHC-II expression plays in this CD4/CD8 T cell anti-tumor response is under investigation. In future studies, B78 melanoma may serve as a critical syngeneic model for development of more effective immunotherapy treatment regimens.Ethics ApprovalAll animal experiments were performed in accordance with protocols approved by Animal Care and Use Committees of the University of Wisconsin-Madison.ReferenceMorris Z, Guy E, Francis D, et al. In situ tumor vaccination by combining local radiation and tumor-specific antibody or immunocytokine treatments. Cancer Res 2016;76(13):3929-3941.


2021 ◽  
Vol 22 (6) ◽  
pp. 2911
Author(s):  
Lauren M. Kreps ◽  
Christina L. Addison

Metastasis to the bone is a common feature of many cancers including those of the breast, prostate, lung, thyroid and kidney. Once tumors metastasize to the bone, they are essentially incurable. Bone metastasis is a complex process involving not only intravasation of tumor cells from the primary tumor into circulation, but extravasation from circulation into the bone where they meet an environment that is generally suppressive of their growth. The bone microenvironment can inhibit the growth of disseminated tumor cells (DTC) by inducing dormancy of the DTC directly and later on following formation of a micrometastatic tumour mass by inhibiting metastatic processes including angiogenesis, bone remodeling and immunosuppressive cell functions. In this review we will highlight some of the mechanisms mediating DTC dormancy and the complex relationships which occur between tumor cells and bone resident cells in the bone metastatic microenvironment. These inter-cellular interactions may be important targets to consider for development of novel effective therapies for the prevention or treatment of bone metastases.


Sign in / Sign up

Export Citation Format

Share Document