scholarly journals Vaccination against the brown stomach worm, Teladorsagia circumcincta, followed by parasite challenge, induces inconsistent modifications in gut microbiota composition of lambs

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
James Rooney ◽  
Alba Cortés ◽  
Riccardo Scotti ◽  
Daniel R. G. Price ◽  
Yvonne Bartley ◽  
...  

Abstract Background Growing evidence points towards a role of gastrointestinal (GI) helminth parasites of ruminants in modifying the composition of the host gut flora, with likely repercussions on the pathophysiology of worm infection and disease, and on animal growth and productivity. However, a thorough understanding of the mechanisms governing helminth-microbiota interactions and of their impact on host health and welfare relies on reproducibility and replicability of findings. To this aim, in this study, we analysed quantitative and qualitative fluctuations in the faecal microbiota composition of lambs vaccinated against, and experimentally infected with, the parasitic GI nematode Teladorsagia circumcincta over the course of two separate trials performed over two consecutive years. Methods Two trials were conducted under similar experimental conditions in 2017 and 2018, respectively. In each trial, lambs were randomly assigned to one of the following experimental groups: (i) vaccinated/infected, (ii) unvaccinated/infected and (iii) unvaccinated/uninfected. Faecal samples collected from individual animals were subjected to DNA extraction followed by high-throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene and bioinformatics and biostatistical analyses of sequence data. Results Substantial differences in the populations of bacteria affected by immunisation against and infection by T. circumcincta were detected when comparing data from the two trials. Nevertheless, the abundance of Prevotella spp. was significantly linked to helminth infection in both trials. Conclusions Despite the largely conflicting findings between the two trials, our data revealed that selected gut microbial populations are consistently affected by T. circumcincta infection and/or vaccination. Nevertheless, our study calls for caution when interpreting data generated from in vivo helminth-microbiome interaction studies that may be influenced by several intrinsic and extrinsic host-, parasite- and environment-related factors.

2020 ◽  
Author(s):  
Anaïs Cazals ◽  
Jordi ESTELLÉ ◽  
Nicolas BRUNEAU ◽  
Jean-Luc COVILLE ◽  
Pierrette MENANTEAU ◽  
...  

Abstract Background Salmonella Enteritidis (SE) is one of the major causes of human foodborne intoxication through the consumption of contaminated poultry products. Genetic selection of animals more resistant to Salmonella carriage and the modulation of gut microbiota are two promising ways of decreasing individual Salmonella carriage. This study aims to identify the main genetic and microbial factors controlling the individual levels of Salmonella carriage in chickens (Gallus gallus) in controlled experimental conditions. Two-hundred and forty animals from the White Leghorn inbred lines, N and 61, were infected by SE at 7 days of age. After infection, animals were kept in isolators to reduce the recontamination of birds by Salmonella. Caecal contents were sampled at 12 days post-infection and used for DNA extraction. Microbiota DNA was used to measure individual counts of SE by digital PCR and to determine the bacterial taxonomic composition through a 16S rRNA gene high-throughput sequencing approach. Results Results confirmed that the N line is more resistant to Salmonella carriage than the 61 line, and that intra-line variability is higher for the 61 line. Furthermore, the 16S analysis showed strong significant differences in microbiota taxonomic composition between the two lines. Out of 617 Operational Taxonomic Units (OTUs), over 390 were differentially abundant between the two lines. Furthermore, within the 61 line, we found a difference in the microbiota taxonomic composition between high and low Salmonella carriers, with 39 differentially abundant OTUs. Finally, via metagenome functional prediction based on 16S data, we identified several metabolic pathways potentially associated to microbiota taxonomic differences (e.g. butyrate metabolism) between high and low carriers. Conclusions Overall, this study demonstrates that the caecal microbiota composition of the N and 61 lines is influenced by the host genetics, which could be one of the reasons why these lines differ for their Salmonella carriage in experimental infection conditions.


2020 ◽  
Vol 69 (6) ◽  
pp. 854-863
Author(s):  
Catherine O'Reilly ◽  
Órla O’Sullivan ◽  
Paul D. Cotter ◽  
Paula M. O’Connor ◽  
Fergus Shanahan ◽  
...  

Introduction. Management of steroid-refractory ulcerative colitis has predominantly involved treatment with systemic cyclosporine A (CyA) and infliximab. Aim. The purpose of this study was to assess the effect of using a colon-targeted delivery system CyA formulation on the composition and functionality of the gut microbiota. Methodology. Ex vivo faecal fermentations from six healthy control subjects were treated with coated minispheres (SmPill) with (+) or without (−) CyA and compared with a non-treated control in a model colon system. In addition, the in vivo effect of the SmPill+CyA formulation was investigated by analysing the gut microbiota in faecal samples collected before the administration of SmPill+CyA and after 7 consecutive days of administration from eight healthy subjects who participated in a pilot study. Results. Analysis of faecal samples by 16S rRNA gene sequencing indicated little variation in the diversity or relative abundance of the microbiota composition before or after treatment with SmPill minispheres with or without CyA ex vivo or with CyA in vivo. Short-chain fatty acid profiles were evaluated using gas chromatography, showing an increase in the concentration of n-butyrate (P=0.02) and acetate (P=0.32) in the faecal fermented samples incubated in the presence of SmPill minispheres with or without CyA. This indicated that increased acetate and butyrate production was attributed to a component of the coated minispheres rather than an effect of CyA on the microbiota. Butyrate and acetate levels also increased significantly (P=0.05 for both) in the faecal samples of healthy individuals following 7 days’ treatment with SmPill+CyA in the pilot study. Conclusion. SmPill minispheres with or without CyA at the clinically relevant doses tested here have negligible direct effects on the gut microbiota composition. Butyrate and acetate production increased, however, in the presence of the beads in an ex vivo model system as well as in vivo in healthy subjects. Importantly, this study also demonstrates the relevance and value of using ex vivo colon models to predict the in vivo impact of colon-targeted drugs directly on the gut microbiota.


2020 ◽  
Author(s):  
Katarina Butorac ◽  
Martina Banic ◽  
Jasna Novak ◽  
Andreja Leboš Pavunc ◽  
Ksenija Uroic ◽  
...  

Abstract Background: The influence of an S-layer-carrying strain Lactobacillus brevis SF9B and a plantaricin-producing strain Lactobacillus plantarum SF9C on the gut microbiota composition was evaluated in the rats. Considering the probiotic potential of Lb. brevis SF9B, this study aimed to examine the antibacterial activity of Lb. plantarum SF9C and potential for their in vivo colonisation, which could be the basis for the investigation of their synergistic functionality. Results: A plantaricin-encoding cluster was identified in Lb. plantarum SF9C, a strain which efficiently inhibited the growth of Listeria monocytogenes ATCC®19111™ and Staphylococcus aureus 3048. Contrary to the plantaricin-producing SF9C strain, the S-layer-carrying SF9B strain excluded Escherichia coli 3014 and Salmonella enterica serovar Typhimurium FP1 from adhesion to Caco-2 cells. Finally, DGGE analysis of the V2-V3 region of the 16S rRNA gene confirmed the transit of two selected lactobacilli through the gastrointestinal tract (GIT). Microbiome profiling via the Illumina MiSeq platform revealed the prevalence of Lactobacillus spp. in the gut microbiota of rats suggesting their colonisation potential in GIT.Conclusion: The combined application of Lb. plantarum SF9C and Lb. brevis SF9B could influence the intestinal microbiota composition, which is reflected through the increased abundance of Lactobacillus genus, but also through altered abundances of other bacterial genera, either in the model of healthy or aberrant microbiota of rats. The obtained results contributed to the functional aspects of SF9C and SF9B strains which could be incorporated in the probiotic-containing functional foods and therefore have a beneficial influence on the gut microbiota composition.


2018 ◽  
Vol 5 (5) ◽  
pp. 180041 ◽  
Author(s):  
Muriel Dietrich ◽  
Teresa Kearney ◽  
Ernest C. J. Seamark ◽  
Janusz T. Paweska ◽  
Wanda Markotter

Seasonal reproduction is a period of extreme physiological and behavioural changes, yet we know little about how it may affect host microbial communities (i.e. microbiota) and pathogen transmission. Here, we investigated shifts of the bacterial microbiota in saliva, urine and faeces during the seasonal reproduction of bats in South Africa, and test for an interaction in shedding patterns of both bacterial ( Leptospira ) and viral (adeno- and herpesviruses) agents. Based on a comparative approach in two cave-dwelling bat species and high-throughput sequencing of the 16S rRNA gene, we demonstrated a clear signature in microbiota changes over the reproduction season, consistent across the multiple body habitats investigated, and associated with the sex, age and reproductive condition of bats. We observed in parallel highly dynamic shedding patterns for both bacteria and viruses, but did not find a significant association between viral shedding and bacterial microbiota composition. Indeed, only Leptospira shedding was associated with alterations in both the diversity and composition of the urinary microbiota. These results illustrate how seasonal reproduction in bats substantially affects microbiota composition and infection dynamics, and have broad implications for the understanding of disease ecology in important reservoir hosts, such as bats.


mSystems ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Johanna B. Holm ◽  
Michael S. Humphrys ◽  
Courtney K. Robinson ◽  
Matthew L. Settles ◽  
Sandra Ott ◽  
...  

ABSTRACT Amplification, sequencing, and analysis of the 16S rRNA gene affords characterization of microbial community composition. As this tool has become more popular and amplicon-sequencing applications have grown in the total number of samples, growth in sample multiplexing is becoming necessary while maintaining high sequence quality and sequencing depth. Here, modifications to the Illumina HiSeq 2500 platform are described which produce greater multiplexing capabilities and 300-bp paired-end reads of higher quality than those produced by the current Illumina MiSeq platform. To improve the feasibility and flexibility of this method, a 2-step PCR amplification protocol is also described that allows for targeting of different amplicon regions, and enhances amplification success from samples with low bacterial bioburden. IMPORTANCE Amplicon sequencing has become a popular and widespread tool for surveying microbial communities. Lower overall costs associated with high-throughput sequencing have made it a widely adopted approach, especially for projects that necessitate sample multiplexing to eliminate batch effect and reduced time to acquire data. The method for amplicon sequencing on the Illumina HiSeq 2500 platform described here provides improved multiplexing capabilities while simultaneously producing greater quality sequence data and lower per-sample cost relative to those of the Illumina MiSeq platform without sacrificing amplicon length. To make this method more flexible for various amplicon-targeted regions as well as improve amplification from low-biomass samples, we also present and validate a 2-step PCR library preparation method.


GigaScience ◽  
2019 ◽  
Vol 8 (12) ◽  
Author(s):  
Julien Tremblay ◽  
Etienne Yergeau

Abstract Background With the advent of high-throughput sequencing, microbiology is becoming increasingly data-intensive. Because of its low cost, robust databases, and established bioinformatic workflows, sequencing of 16S/18S/ITS ribosomal RNA (rRNA) gene amplicons, which provides a marker of choice for phylogenetic studies, has become ubiquitous. Many established end-to-end bioinformatic pipelines are available to perform short amplicon sequence data analysis. These pipelines suit a general audience, but few options exist for more specialized users who are experienced in code scripting, Linux-based systems, and high-performance computing (HPC) environments. For such an audience, existing pipelines can be limiting to fully leverage modern HPC capabilities and perform tweaking and optimization operations. Moreover, a wealth of stand-alone software packages that perform specific targeted bioinformatic tasks are increasingly accessible, and finding a way to easily integrate these applications in a pipeline is critical to the evolution of bioinformatic methodologies. Results Here we describe AmpliconTagger, a short rRNA marker gene amplicon pipeline coded in a Python framework that enables fine tuning and integration of virtually any potential rRNA gene amplicon bioinformatic procedure. It is designed to work within an HPC environment, supporting a complex network of job dependencies with a smart-restart mechanism in case of job failure or parameter modifications. As proof of concept, we present end results obtained with AmpliconTagger using 16S, 18S, ITS rRNA short gene amplicons and Pacific Biosciences long-read amplicon data types as input. Conclusions Using a selection of published algorithms for generating operational taxonomic units and amplicon sequence variants and for computing downstream taxonomic summaries and diversity metrics, we demonstrate the performance and versatility of our pipeline for systematic analyses of amplicon sequence data.


2018 ◽  
Author(s):  
Johanna B. Holm ◽  
Michael S. Humphrys ◽  
Courtney K. Robinson ◽  
Matthew L. Settles ◽  
Sandra Ott ◽  
...  

AbstractAmplification, sequencing and analysis of the 16S rRNA gene affords characterization of microbial community composition. As this tool has become more popular and amplicon-sequencing applications have grown in the total number of samples, growth in sample multiplexing is becoming necessary while maintaining high sequence quality and sequencing depth. Here, modifications to the Illumina HiSeq 2500 platform are described which produce greater multiplexing capabilities and 300 bp paired-end reads of higher quality than produced by the current Illumina MiSeq platform. To improve the feasibility and flexibility of this method, a 2-Step PCR amplification protocol is also described that allows for targeting of different amplicon regions, thus improving amplification success from low bacterial bioburden samples.ImportanceAmplicon sequencing has become a popular and widespread tool for surveying microbial communities. Lower overall costs associated with high throughput sequencing have made it a widely-adopted approach, especially for projects which necessitate sample multiplexing to eliminate batch effect and reduced time to acquire data. The method for amplicon sequencing on the Illumina HiSeq 2500 platform described here provides improved multiplexing capabilities while simultaneously producing greater quality sequence data and lower per sample cost relative to the Illumina MiSeq platform, without sacrificing amplicon length. To make this method more flexible to various amplicon targeted regions as well as improve amplification from low biomass samples, we also present and validate a 2-Step PCR library preparation method.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 99
Author(s):  
Joan Tang Xiao Joe ◽  
Yung-Che Tseng ◽  
Jen-Leih Wu ◽  
Ming-Wei Lu

Epinephelus coioides, or grouper, is a high economic value fish species that plays an important role in the aquaculture industry in Asia. However, both viral and bacterial diseases have threatened grouper for many years, especially nervous necrosis virus, grouper iridovirus and Vibrio harveyi, which have caused a bottleneck in the grouper industry. Currently, intestinal microbiota can provide novel insights into the pathogenesis-related factors involved in pathogen infection. Hence, we investigated the comparison of intestinal microbiota communities in control group and pathogen-infected grouper through high-throughput sequencing of the 16S rRNA gene. Our results showed that microbial diversity was decreased, whereas microbial richness was increased during pathogen infection. The individuals in each group were distributed distinctly on the PLSDA diagram, especially the GIV group. Proteobacteria and Firmicutes were the most abundant bacterial phyla in all groups. Interestingly, beneficial genera, Faecalibacterium and Bifidobacterium, predominated in the intestines of the control group. In contrast, the intestines of pathogen-infected grouper had higher levels of harmful genera such as Sphingomonas, Atopostipes, Staphylococcus and Acinetobacter. Additionally, we investigated the expression levels of innate and adaptive immune-related genes after viral and bacterial infection. The results revealed that immunoglobulin T and proinflammatory cytokine levels in the intestine increased after pathogen infection. Through these unique bacterial compositions in diseased and uninfected fish, we could establish a novel therapeutic approach and bacterial marker for preventing and controlling these diseases.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 80
Author(s):  
Yu Ma ◽  
Qian Zhang ◽  
Wenqiang Liu ◽  
Zhaohua Chen ◽  
Chao Zou ◽  
...  

In this work, the preventive effect of depolymerized sulfated polysaccharides from Eucheuma serra (DESP) on bacterial diarrhea by regulating intestinal flora was investigated in vivo. Based on the enterotoxigenic Escherichia coli (ETEC)-infected mouse diarrhea model, DESP at doses ranging from 50 mg/kg to 200 mg/kg alleviated weight loss and decreased the diarrhea rate and diarrhea index. Serological tests showed that the levels of inflammation-related factors were effectively suppressed. Furthermore, the repaired intestinal mucosa was verified by morphology and pathological tissue section observations. Compared with the model group, the richness and diversity of the intestinal flora in the DESP group increased according to the 16S rRNA high-throughput sequencing of the gut microbiota. Specifically, Firmicutes and Actinobacteria increased, and Proteobacteria decreased after DESP administration. At the family level, DESP effectively improved the abundance of Lactobacillaceae, Bifidobacteriaceae, and Lachnospiraceae, while significantly inhibiting the growth of Enterobacteriaceae. Therefore, the antimicrobial diarrhea function of DESP may be related to the regulation of intestinal microbiota.


2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 3016-3027 ◽  
Author(s):  
Chen Shao ◽  
Zhao Lv ◽  
Ying Pan ◽  
Khaled A. S. Al-Rasheid ◽  
Zhenzhen Yi

The morphology and infraciliature of two hypotrichous ciliates, Oxytricha paragranulifera n. sp. and Oxytricha granulifera Foissner and Adam, 1983, collected respectively from the surface of a sandy soil in the Huguang mangrove forest, Zhanjiang, China, and the surface of soil in a forest beside Ziwu Road, Xian, north-west China, were examined. O. paragranulifera n. sp. is characterized by an elongate body with slightly tapered anterior end, two macronuclear nodules and two micronuclei, paroral and endoral in Stylonychia-pattern, colourless cortical granules distributed in clusters or irregular short rows, adoral zone occupying 37 % of the body length, marginal rows almost confluent posteriorly, six dorsal kineties and three caudal cirri, caudal cirri and dorsal bristles almost indistinguishable when viewed in vivo. The well-known O. granulifera Foissner and Adam, 1983 was also redescribed and can be separated from the novel species by having cortical granules arranged along dorsal kineties and marginal rows on both sides (vs grouped in clusters as well as in short irregular rows), paroral and endoral in Oxytricha-pattern (vs in Stylonychia-pattern), macronuclear nodules obviously detached (vs adjacent) and a non-saline terrestrial habitat (vs saline terrestrial). The separation of these two taxa is also firmly supported by the molecular data, which show a significant difference between the two in their SSU rRNA gene sequences (similarity 97.1 %). Phylogenetic analyses based on SSU rRNA gene sequence data suggest a close relationship within the Oxytrichidae assemblage between O. paragranulifera n. sp. and O. granulifera.


Sign in / Sign up

Export Citation Format

Share Document