scholarly journals A cross-cohort analysis of autosomal DNA methylation sex differences in the term placenta

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Amy M. Inkster ◽  
Victor Yuan ◽  
Chaini Konwar ◽  
Allison M. Matthews ◽  
Carolyn J. Brown ◽  
...  

Abstract Background Human placental DNA methylation (DNAme) data is a valuable resource for studying sex differences during gestation, as DNAme profiles after delivery reflect the cumulative effects of gene expression patterns and exposures across gestation. Here, we present an analysis of sex differences in autosomal DNAme in the uncomplicated term placenta (n = 343) using the Illumina 450K array. Results At a false discovery rate < 0.05 and a mean sex difference in DNAme beta value of > 0.10, we identified 162 autosomal CpG sites that were differentially methylated by sex and replicated in an independent cohort of samples (n = 293). Several of these differentially methylated CpG sites were part of larger correlated regions of sex differential DNAme. Although global DNAme levels did not differ by sex, the majority of significantly differentially methylated CpGs were more highly methylated in male placentae, the opposite of what is seen in differential methylation analyses of somatic tissues. Patterns of autosomal DNAme at these 162 CpGs were significantly associated with maternal age (in males) and newborn birthweight standard deviation (in females). Conclusions Our results provide a comprehensive analysis of sex differences in autosomal DNAme in the term human placenta. We report a list of high-confidence autosomal sex-associated differentially methylated CpGs and identify several key features of these loci that suggest their relevance to sex differences observed in normative and complicated pregnancies.

2021 ◽  
Author(s):  
Amy M. Inkster ◽  
Victor Yuan ◽  
Chaini Konwar ◽  
Allison M. Matthews ◽  
Carolyn J. Brown ◽  
...  

ABSTRACTBackgroundHuman placental DNA methylation (DNAme) data is a valuable resource for studying sex differences during gestation, as DNAme profiles after delivery reflect the cumulative effects of gene expression patterns and exposures across gestation. Here, we present an analysis of sex differences in autosomal patterns of DNAme in the uncomplicated term placenta (n=343) using the Illumina 450K array.ResultsUsing a false discovery rate < 0.05 and a mean sex difference in DNAme beta value of > 0.10, we identified 162 autosomal CpG sites that were differentially methylated by sex, and that replicated in an independent cohort of samples (n=293). Several of these differentially methylated CpG sites were part of larger correlated regions of differential DNAme, and many also exhibited sex-specific DNAme variability. Although global DNAme levels did not differ by sex, the majority of significantly differentially methylated CpGs were more highly methylated in male placentae, the opposite of what is seen in differential methylation analyses of somatic tissues. Interestingly, patterns of autosomal DNAme at these significantly differentially methylated CpGs organized placental samples along a continuum, rather than into discrete male and female clusters, and sample position along the continuum was significantly associated with maternal age and newborn birthweight standard deviation.ConclusionsOur results provide a comprehensive analysis of sex differences in autosomal DNAme in the term human placenta. We report a list of high-confidence autosomal sex-associated differentially methylated CpGs, and identify several key features of these loci that suggest their relevance to sex differences observed in normative and complicated pregnancies.


2021 ◽  
Author(s):  
Jumpei Yamazaki ◽  
Yuki Matsumoto ◽  
Jaroslav Jelinek ◽  
Teita Ishizaki ◽  
Shingo Maeda ◽  
...  

Abstract Background: DNA methylation plays important functions in gene expression regulation that is involved in individual development and various diseases. DNA methylation has been well studied in human and model organisms, but only limited data exist in companion animals like dog. Results: Using methylation-sensitive restriction enzyme-based next generation sequencing (Canine DREAM), we obtained canine DNA methylation maps from 16 somatic tissues. In total, we evaluated 130,861 CpG sites. The majority of CpG sites were either highly methylated (>70%, 52.5%-64.6% of all CpG sites analyzed) or unmethylated (<30%, 22.5%-28.0% of all CpG sites analyzed) which are methylation patterns similar to other species. The overall methylation status of CpG sites across the 32 methylomes were remarkably similar. However, the tissue types were clearly defined by principle component analysis and hierarchical clustering analysis with DNA methylome. We found 6416 CpG sites located closely at promoter region of genes and inverse correlation between DNA methylation and gene expression of these genes. Conclusions: Our study provides basic dataset for DNA methylation profiles in dogs.


2019 ◽  
Vol 63 (6) ◽  
pp. 663-676 ◽  
Author(s):  
Simão Teixeira da Rocha ◽  
Anne-Valerie Gendrel

Abstract Monoallelic gene expression occurs in diploid cells when only one of the two alleles of a gene is active. There are three main classes of genes that display monoallelic expression in mammalian genomes: (1) imprinted genes that are monoallelically expressed in a parent-of-origin dependent manner; (2) X-linked genes that undergo random X-chromosome inactivation in female cells; (3) random monoallelically expressed single and clustered genes located on autosomes. The heritability of monoallelic expression patterns during cell divisions implies that epigenetic mechanisms are involved in the cellular memory of these expression states. Among these, methylation of CpG sites on DNA is one of the best described modification to explain somatic inheritance. Here, we discuss the relevance of DNA methylation for the establishment and maintenance of monoallelic expression patterns among these three groups of genes, and how this is intrinsically linked to development and cellular states.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jumpei Yamazaki ◽  
Yuki Matsumoto ◽  
Jaroslav Jelinek ◽  
Teita Ishizaki ◽  
Shingo Maeda ◽  
...  

AbstractDNA methylation plays important functions in gene expression regulation that is involved in individual development and various diseases. DNA methylation has been well studied in human and model organisms, but only limited data exist in companion animals like dog. Using methylation-sensitive restriction enzyme-based next generation sequencing (Canine DREAM), we obtained canine DNA methylation maps of 16 somatic tissues from two dogs. In total, we evaluated 130,861 CpG sites. The majority of CpG sites were either highly methylated (> 70%, 52.5–64.6% of all CpG sites analyzed) or unmethylated (< 30%, 22.5–28.0% of all CpG sites analyzed) which are methylation patterns similar to other species. The overall methylation status of CpG sites across the 32 methylomes were remarkably similar. However, the tissue types were clearly defined by principle component analysis and hierarchical clustering analysis with DNA methylome. We found 6416 CpG sites located closely at promoter region of genes and inverse correlation between DNA methylation and gene expression of these genes. Our study provides basic dataset for DNA methylation profiles in dogs.


2019 ◽  
Author(s):  
Kathleen Cheung ◽  
Marjolein J. Burgers ◽  
David A. Young ◽  
Simon Cockell ◽  
Louise N. Reynard

AbstractBackgroundDNA methylation of CpG sites is commonly measured using Illumina Infinium BeadChip platforms. The Infinium MethylationEPIC array has replaced the Infinium Methylation450K array. The two arrays use the same technology, with the EPIC array assaying 865859 CpG sites, almost double the number of sites present on the 450K array. In this study, we compare DNA methylation values of shared CpGs of the same human cartilage samples assayed using both platforms.MethodsDNA methylation was measured in 21 human cartilage samples using the Illumina Infinium Methylation450K BeadChip and the Infinium methylationEPIC array. Additional matched 450K and EPIC data in whole tumour and whole blood were downloaded from GEO GSE92580 and GSE86833 respectively. Data were processed using the Bioconductor package Minfi. Additionally, DNA methylation of six CpG sites was validated for the same 21 cartilage samples by use of pyrosequencing.ResultsIn cartilage samples, overall sample correlations between methylation values generated by the two arrays were high (Pearson correlation coefficient r > 0.96). However, 50.5% of CpG sites showed poor correlation (r < 0.2) between arrays. Sites with limited variance and with either very high or very low methylation levels in cartilage exhibited lower correlation values, corroborating prior studies in whole blood. Bisulfite pyrosequencing did not highlight one array as generating more accurate methylation values that the other. For a specific CpG site, the array methylation correlation coefficient differed between cartilage, tumour and whole blood, reflecting the difference in methylation variance between cell types. These patterns can be observed across different tissues with different CpG site variances. When performing differential methylation analysis, the mean probe correlation co-efficient increased with increasing Δβ threshold used.ConclusionCpG sites with low variability within a tissue showed poor reproducibility between arrays. However, variance and thus reproducibility differs across different tissue types. Therefore, researchers should be cautious when analysing methylation of CpG sites that show low methylation variance within the cell type of interest, regardless of platform or method used to assay methylation.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2670-2670
Author(s):  
Allison E Ashley-Koch ◽  
Melanie Garrett ◽  
Karen Soldano ◽  
Latorya A. Barber ◽  
Marilyn J. Telen

Abstract Abstract 2670 Introduction: Hydroxyurea (HU) is currently the only pharmacologic agent widely used to ameliorate the symptoms of sickle cell disease (SCD). The clinical effects of HU are diverse, including the well-known increase in levels of fetal hemoglobin (HbF), effects on leukocyte and platelet counts, and down-regulation of red cell adhesion despite increased expression of some adhesion receptors. However, the precise mechanisms by which HU exerts its ameliorative and pleiotropic actions are not well understood. HU is primarily thought to inhibit DNA replication and cause cell cycle arrest due to inhibition of ribonucleotide reductase (Yarbro, 1992). This mechanism is likely how HU exhibits its ameliorative effects in myeloproliferative conditions. But it is not as clear how this action results in an increase in the percentage of red blood cells that express a large percentage of HbF (Platt, 2008). Previous evidence suggests that HU may induce epigenetic (specifically, hypermethylation) changes to DNA (Nyce, 1989). Thus, we hypothesized that HU may increase HbF levels and cause other systemic changes through epigenetic mechanisms. Methods: To test the hypothesis that HU usage is associated with alterations in DNA methylation, we examined DNA samples from 24 adult patients with SCD, 12 of whom were taking HU at the time of DNA collection and 12 of whom were not. DNA from each individual was pre-treated with bisulfite (Zymo Research) and assessed for methylation levels at 27,578 CpG sites in 14,495 genes using the Illumina HumanMethylation27 BeadChip. One sample (off HU) failed to undergo a successful bisulfite DNA conversion and was subsequently removed from analysis. The relative levels of methylation (β) were calculated as the ratio of methylated probe signal to total locus signal intensity. Linear regression (PROC GLM, SAS version 9.1.3, Cary, NC) was used to test for differences in methylation (β) as a function of HU usage, controlling for sex and age. Results: On average, patients using HU had higher mean levels of methylation genome-wide compared with patients not taking HU, although the difference was not statistically significant, likely due to the small number of patients examined. Using the Benjamini-Hochberg false discovery correction for multiple testing and setting a stringent corrected p-value threshold of 0.05, we identified 247 out of the approximately 27,000 CpG sites that were differentially methylated as a function of HU usage. Eight CpG sites met a very stringent Bonferroni correction and represented a functionally diverse set of genes, including ones that encode a phosphatase, influence neural outgrowth, and play a role in vertebral development. CpG sites meeting the false discovery correction (n=247) were subsequently subjected to gene network and ontology analysis using DAVID pathway software (http://david.abcc.ncifcrf.gov/) to determine if specific biological pathways were statistically enriched for differences in DNA methylation. Several of these sites were associated with pathways involved in cell growth, senescence and differentiation, as might be expected given the known effects of HU on hematopoiesis. However, the TGFβ pathway was also significantly represented in this subset of CpG sites (pathway analysis p<0.05). Discussion: Consistent with findings by Nyce (1989), we observed a trend in which HU usage was associated with hypermethylation, so that patients taking HU had on average more methylation genome-wide than patients not taking HU. Genetic variation in the TGFβ pathway has been implicated in the occurrence of several SCD complications, including pulmonary hypertension (Ashley-Koch et al., 2008), risk for stroke (Sebastiani et al., 2005), leg ulcers (Nolan et al., 2006), bacteremia (Adewoye et al., 2006), and priapism (Elliott et al., 2007). Therefore, identification of this pathway as affected by HU is especially interesting. In summary, we have evidence that DNA epigenetic differences occur in sickle cell patients as a result of HU usage and are associated a wide variety of gene pathways, consistent with the diverse array of clinical and laboratory changes observed in patients on HU. Future studies will include confirmation of the epigenetic differences in the specific genes implicated among a larger cohort of SCD patients on and off HU, as well as functional studies of these genes. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 14 ◽  
pp. 251686572110061
Author(s):  
Jaclyn M Goodrich ◽  
Melissa A Furlong ◽  
Alberto J Caban-Martinez ◽  
Alesia M Jung ◽  
Ken Batai ◽  
...  

Firefighters are exposed to a variety of environmental hazards and are at increased risk for multiple cancers. There is evidence that risks differ by ethnicity, yet the biological or environmental differences underlying these differences are not known. DNA methylation is one type of epigenetic regulation that is altered in cancers. In this pilot study, we profiled DNA methylation with the Infinium MethylationEPIC in blood leukocytes from 31 Hispanic white and 163 non-Hispanic white firefighters. We compared DNA methylation (1) at 12 xenobiotic metabolizing genes and (2) at all loci on the array (>740 000), adjusting for confounders. Five of the xenobiotic metabolizing genes were differentially methylated at a raw P-value <.05 when comparing the 2 ethnic groups, yet were not statistically significant at a 5% false discovery rate ( q-value <.05). In the epigenome-wide analysis, 76 loci exhibited DNA methylation differences at q < .05. Among these, 3 CpG sites in the promoter region of the biotransformation gene SULT1C2 had lower methylation in Hispanic compared to non-Hispanic firefighters. Other differentially methylated loci included genes that have been implicated in carcinogenesis in published studies ( FOXK2, GYLTL1B, ZBTB16, ARHGEF10, and more). In this pilot study, we report differential DNA methylation between Hispanic and non-Hispanic firefighters in xenobiotic metabolism genes and other genes with functions related to cancer. Epigenetic susceptibility by ethnicity merits further study as this may alter risk for cancers linked to toxic exposures.


1999 ◽  
Vol 19 (11) ◽  
pp. 7327-7335 ◽  
Author(s):  
Charles De Smet ◽  
Christophe Lurquin ◽  
Bernard Lethé ◽  
Valérie Martelange ◽  
Thierry Boon

ABSTRACT A subset of male germ line-specific genes, theMAGE-type genes, are activated in many human tumors, where they produce tumor-specific antigens recognized by cytolytic T lymphocytes. Previous studies on gene MAGE-A1 indicated that transcription factors regulating its expression are present in all tumor cell lines whether or not they express the gene. The analysis of two CpG sites located in the promoter showed a strong correlation between expression and demethylation. It was also shown thatMAGE-A1 transcription was induced in cell cultures treated with demethylating agent 5′-aza-2′-deoxycytidine. We have now analyzed all of the CpG sites within the 5′ region of MAGE-A1 and show that for all of them, demethylation correlates with the transcription of the gene. We also show that the induction ofMAGE-A1 with 5′-aza-2′-deoxycytidine is stable and that in all the cell clones it correlates with demethylation, indicating that demethylation is necessary and sufficient to produce expression. Conversely, transfection experiments with in vitro-methylatedMAGE-A1 sequences indicated that heavy methylation suffices to stably repress the gene in cells containing the transcription factors required for expression. Most MAGE-type genes were found to have promoters with a high CpG content. Remarkably, although CpG-rich promoters are classically unmethylated in all normal tissues, those of MAGE-A1 and LAGE-1 were highly methylated in somatic tissues. In contrast, they were largely unmethylated in male germ cells. We conclude that MAGE-type genes belong to a unique subset of germ line-specific genes that use DNA methylation as a primary silencing mechanism.


2012 ◽  
Vol 19 (6) ◽  
pp. 805-816 ◽  
Author(s):  
Cuong V Duong ◽  
Richard D Emes ◽  
Frank Wessely ◽  
Kiren Yacqub-Usman ◽  
Richard N Clayton ◽  
...  

DNA methylation is one of the several epigenetic modifications that together with genetic aberrations are hallmarks of tumorigenesis including those emanating from the pituitary gland. In this study, we examined DNA methylation across 27 578 CpG sites spanning more than 14 000 genes in the major pituitary adenoma subtypes. Genome-wide changes were first determined in a discovery cohort comprising non-functioning (NF), growth hormone (GH), prolactin (PRL)-secreting and corticotroph (CT) adenoma relative to post-mortem pituitaries. Using stringent cut-off criteria, we validated increased methylation by pyrosequencing in 12 of 16 (75%) genes. Overall, these criteria identified 40 genes in NF, 21 in GH, six in PRL and two in CT that were differentially methylated relative to controls. In a larger independent cohort of adenomas, for genes in which hypermethylation had been validated, different frequencies of hypermethylation were apparent, where the KIAA1822 (HHIPL1) and TFAP2E genes were hypermethylated in 12 of 13 NF adenomas whereas the COL1A2 gene showed an increase in two of 13 adenomas. For genes showing differential methylation across and between adenoma subtypes, pyrosequencing confirmed these findings. In three of 12 genes investigated, an inverse relationship between methylation and transcript expression was observed where increased methylation of EML2, RHOD and HOXB1 is associated with significantly reduced transcript expression. This study provides the first genome-wide survey of adenoma, subtype-specific epigenomic changes and will prove useful for identification of biomarkers that perhaps predict or characterise growth patterns. The functional characterisation of identified genes will also provide insight of tumour aetiology and identification of new therapeutic targets.


2019 ◽  
Vol 112 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Zongli Xu ◽  
Dale P Sandler ◽  
Jack A Taylor

Abstract Background Peripheral blood DNA methylation may be associated with breast cancer, but studies of candidate genes and global and genome-wide DNA methylation have been inconsistent. Methods We performed an epigenome-wide study using Infinium HumanMethylation450 BeadChips with prospectively collected blood DNA samples from the Sister Study (1552 cases, 1224 subcohort). Differentially methylated cytosine-phosphate-guanine sites (dmCpGs) were identified using case-cohort proportional hazard models and replicated using deposited data from European Prospective Investigation into Cancer and Nutrition in Italy (EPIC-Italy) (n = 329). The correlation between methylation and time to diagnosis was examined using robust linear regression. Causal or consequential relationships of methylation to breast cancer were examined by Mendelian randomization using OncoArray 500 K single-nucleotide polymorphism data. All statistical tests were two-sided. Results We identified 9601 CpG markers associated with invasive breast cancer (false discovery rate = q &lt; 0.01), with 510 meeting a strict Bonferroni correction threshold (10–7). A total of 2095 of these CpGs replicated in the independent EPIC-Italy dataset, including 144 meeting the Bonferroni threshold. Sister Study women who developed ductal carcinoma in situ had methylation similar to noncases. Most (1501, 71.6%) dmCpGs showed lower methylation in invasive cases. In case-only analysis, methylation was statistically significantly associated (false discovery rate = q &lt; 0.05) with time to diagnosis for 892 (42.6%) of the dmCpGs. Analyses based on genetic association suggest that methylation differences are likely a consequence rather than a cause of breast cancer. Pathway analysis shows enrichment of breast cancer-related gene pathways, and dmCpGs are overrepresented in known breast cancer susceptibility genes. Conclusions Our findings suggest that the DNA methylation profile of blood starts to change in response to invasive breast cancer years before the tumor is clinically detected.


Sign in / Sign up

Export Citation Format

Share Document