scholarly journals Codon harmonization reduces amino acid misincorporation in bacterially expressed P. falciparum proteins and improves their immunogenicity

AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Neeraja Punde ◽  
Jennifer Kooken ◽  
Dagmar Leary ◽  
Patricia M. Legler ◽  
Evelina Angov

Abstract Codon usage frequency influences protein structure and function. The frequency with which codons are used potentially impacts primary, secondary and tertiary protein structure. Poor expression, loss of function, insolubility, or truncation can result from species-specific differences in codon usage. “Codon harmonization” more closely aligns native codon usage frequencies with those of the expression host particularly within putative inter-domain segments where slower rates of translation may play a role in protein folding. Heterologous expression of Plasmodium falciparum genes in Escherichia coli has been a challenge due to their AT-rich codon bias and the highly repetitive DNA sequences. Here, codon harmonization was applied to the malarial antigen, CelTOS (Cell-traversal protein for ookinetes and sporozoites). CelTOS is a highly conserved P. falciparum protein involved in cellular traversal through mosquito and vertebrate host cells. It reversibly refolds after thermal denaturation making it a desirable malarial vaccine candidate. Protein expressed in E. coli from a codon harmonized sequence of P. falciparum CelTOS (CH-PfCelTOS) was compared with protein expressed from the native codon sequence (N-PfCelTOS) to assess the impact of codon usage on protein expression levels, solubility, yield, stability, structural integrity, recognition with CelTOS-specific mAbs and immunogenicity in mice. While the translated proteins were expected to be identical, the translated products produced from the codon-harmonized sequence differed in helical content and showed a smaller distribution of polypeptides in mass spectra indicating lower heterogeneity of the codon harmonized version and fewer amino acid misincorporations. Substitutions of hydrophobic-to-hydrophobic amino acid were observed more commonly than any other. CH-PfCelTOS induced significantly higher antibody levels compared with N-PfCelTOS; however, no significant differences in either IFN-γ or IL-4 cellular responses were detected between the two antigens.

2020 ◽  
Author(s):  
Xueliang Lyu ◽  
Yi Liu

ABSTRACTUnder amino acid starvation condition, eukaryotic organisms activate a general amino acid control response. In Neurospora crassa, Cross Pathway Control-1 (CPC-1), the ortholog of the Saccharomyces cerevisiae bZIP transcription factor GCN4, functions as the master regulator of the general amino acid control response. Codon usage biases are a universal feature of eukaryotic genomes and are critical for regulation of gene expression. Although codon usage has also been implicated in the regulation of protein structure and function, genetic evidence supporting this conclusion is very limited. Here we show that Neurospora cpc-1 has a non-optimal NNU-rich codon usage profile that contrasts with the strong NNC codon preference in the genome. Although substitution of the cpc-1 NNU codons with synonymous NNC codons elevated CPC-1 expression in Neurospora, it altered CPC-1 degradation rate and abolished its amino acid starvation-induced protein stabilization. The codon-manipulated CPC-1 protein also exhibited different sensitivity to limited protease digestion. Furthermore, CPC-1 functions in rescuing the cell growth of the cpc-1 deletion mutant and activating the expression of its target genes were impaired by the synonymous codon changes. Together, these results reveal the critical role of codon usage in regulating of CPC-1 expression and function, and establish a genetic example of the importance of codon usage in protein structure.Abstract importanceGeneral amino acid control response is critical for organisms to adapt to amino acid starvation condition. The preference to use certain synonymous codons are a universal feature of all genomes. Synonymous codon changes were previously thought to be silent mutations. In this study, we show that the Neurospora cpc-1 gene has an unusual codon usage profile compared to other genes in the genome. We found that codon optimization of the cpc-1 gene without changing its amino acid sequence resulted in elevated CPC-1 expression, altered protein degradation rate and impaired protein functions due to changes in protein structure. Together, these results reveal the critical role of synonymous codon usage in regulating of CPC-1 expression and function, and establish a genetic example of the importance of codon usage in protein structure.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Xueliang Lyu ◽  
Yi Liu

ABSTRACT Under amino acid starvation conditions, eukaryotic organisms activate a general amino acid control response. In Neurospora crassa, Cross Pathway Control Protein 1 (CPC-1), the ortholog of the Saccharomyces cerevisiae bZIP transcription factor GCN4, functions as the master regulator of the general amino acid control response. Codon usage biases are a universal feature of eukaryotic genomes and are critical for regulation of gene expression. Although codon usage has also been implicated in the regulation of protein structure and function, genetic evidence supporting this conclusion is very limited. Here, we show that Neurospora cpc-1 has a nonoptimal NNU-rich codon usage profile that contrasts with the strong NNC codon preference in the genome. Although substitution of the cpc-1 NNU codons with synonymous NNC codons elevated CPC-1 expression in Neurospora, it altered the CPC-1 degradation rate and abolished its amino acid starvation-induced protein stabilization. The codon-manipulated CPC-1 protein also exhibited different sensitivity to limited protease digestion. Furthermore, CPC-1 functions in rescuing the cell growth of the cpc-1 deletion mutant and activation of the expression of its target genes were impaired by the synonymous codon changes. Together, these results reveal the critical role of codon usage in regulation of CPC-1 expression and function and establish a genetic example of the importance of codon usage in protein folding. IMPORTANCE The general amino acid control response is critical for adaptation of organisms to amino acid starvation conditions. The preference to use certain synonymous codons is a universal feature of all genomes. Synonymous codon changes were previously thought to be silent mutations. In this study, we showed that the Neurospora cpc-1 gene has an unusual codon usage profile compared to other genes in the genome. We found that codon optimization of the cpc-1 gene without changing its amino acid sequence resulted in elevated CPC-1 expression, an altered protein degradation rate, and impaired protein functions due to changes in protein structure. Together, these results reveal the critical role of synonymous codon usage in regulation of CPC-1 expression and function and establish a genetic example of the importance of codon usage in protein structure.


1997 ◽  
Vol 323 (2) ◽  
pp. 415-419 ◽  
Author(s):  
Lakshmi KASTURI ◽  
Hegang CHEN ◽  
Susan H. SHAKIN-ESHLEMAN

N-linked glycosylation can profoundly affect protein expression and function. N-linked glycosylation usually occurs at the sequon Asn-Xaa-Ser/Thr, where Xaa is any amino acid residue except Pro. However, many Asn-Xaa-Ser/Thr sequons are glycosylated inefficiently or not at all for reasons that are poorly understood. We have used a site-directed mutagenesis approach to examine how the Xaa and hydroxy (Ser/Thr) amino acid residues in sequons influence core-glycosylation efficiency. We recently demonstrated that certain Xaa amino acids inhibit core glycosylation of the sequon, Asn37-Xaa-Ser, in rabies virus glycoprotein (RGP). Here we examine the impact of different Xaa residues on core-glycosylation efficiency when the Ser residue in this sequon is replaced with Thr. The core-glycosylation efficiencies of RGP variants with different Asn37-Xaa-Ser/Thr sequons were compared by using a cell-free translation/glycosylation system. Using this approach we confirm that four Asn-Xaa-Ser sequons are poor oligosaccharide acceptors: Asn-Trp-Ser, Asn-Asp-Ser, Asn-Glu-Ser and Asn-Leu-Ser. In contrast, Asn-Xaa-Thr sequons are efficiently glycosylated, even when Xaa = Trp, Asp, Glu or Leu. A comparison of the glycosylation status of Asn-Xaa-Ser and Asn-Xaa-Thr sequons in other glycoproteins confirms that sequons with Xaa = Trp, Asp, Glu or Leu are rarely glycosylated when Ser is the hydroxy amino acid residue, and that these sequons are unlikely to serve as glycosylation sites when introduced into proteins by site-directed mutagenesis.


2019 ◽  
Vol 209 (3) ◽  
pp. 301-308 ◽  
Author(s):  
Theis Jacobsen ◽  
Benjamin Bardiaux ◽  
Olivera Francetic ◽  
Nadia Izadi-Pruneyre ◽  
Michael Nilges

AbstractType IV pili are versatile and highly flexible fibers formed on the surface of many Gram-negative and Gram-positive bacteria. Virulence and infection rate of several pathogenic bacteria, such as Neisseria meningitidis and Pseudomonas aeruginosa, are strongly dependent on the presence of pili as they facilitate the adhesion of the bacteria to the host cell. Disruption of the interactions between the pili and the host cells by targeting proteins involved in this interaction could, therefore, be a treatment strategy. A type IV pilus is primarily composed of multiple copies of protein subunits called major pilins. Additional proteins, called minor pilins, are present in lower abundance, but are essential for the assembly of the pilus or for its specific functions. One class of minor pilins is required to initiate the formation of pili, and may form a complex similar to that identified in the related type II secretion system. Other, species-specific minor pilins in the type IV pilus system have been shown to promote additional functions such as DNA binding, aggregation and adherence. Here, we will review the structure and the function of the minor pilins from type IV pili.


Robotica ◽  
2015 ◽  
Vol 34 (8) ◽  
pp. 1705-1733 ◽  
Author(s):  
Kevin Molloy ◽  
Rudy Clausen ◽  
Amarda Shehu

SUMMARYEvidence is emerging that the role of protein structure in disease needs to be rethought. Sequence mutations in proteins are often found to affect the rate at which a protein switches between structures. Modeling structural transitions in wildtype and variant proteins is central to understanding the molecular basis of disease. This paper investigates an efficient algorithmic realization of the stochastic roadmap simulation framework to model structural transitions in wildtype and variants of proteins implicated in human disorders. Our results indicate that the algorithm is able to extract useful information on the impact of mutations on protein structure and function.


1994 ◽  
Vol 127 (3) ◽  
pp. 707-723 ◽  
Author(s):  
K A Beck ◽  
J A Buchanan ◽  
V Malhotra ◽  
W J Nelson

Spectrin is a major component of a membrane-associated cytoskeleton involved in the maintenance of membrane structural integrity and the generation of functionally distinct membrane protein domains. Here, we show that a homolog of erythrocyte beta-spectrin (beta I sigma*) co-localizes with markers of the Golgi complex in a variety of cell types, and that microinjected beta-spectrin codistributes with elements of the Golgi complex. Significantly, we show a dynamic relationship between beta-spectrin and the structural and functional organization of the Golgi complex. Disruption of both Golgi structure and function, either in mitotic cells or following addition of brefeldin A, is accompanied by loss of beta-spectrin from Golgi membranes and dispersal in the cytoplasm. In contrast, perturbation of Golgi structure without a loss of function, by the addition of nocodazole, results in retention of beta-spectrin with the dispersed Golgi elements. These results indicate that the association of beta-spectrin with Golgi membranes is coupled to Golgi organization and function.


2017 ◽  
Vol 45 (2) ◽  
pp. 555-562 ◽  
Author(s):  
James S. Italia ◽  
Yunan Zheng ◽  
Rachel E. Kelemen ◽  
Sarah B. Erickson ◽  
Partha S. Addy ◽  
...  

In the last two decades, unnatural amino acid (UAA) mutagenesis has emerged as a powerful new method to probe and engineer protein structure and function. This technology enables precise incorporation of a rapidly expanding repertoire of UAAs into predefined sites of a target protein expressed in living cells. Owing to the small footprint of these genetically encoded UAAs and the large variety of enabling functionalities they offer, this technology has tremendous potential for deciphering the delicate and complex biology of the mammalian cells. Over the last few years, exciting progress has been made toward expanding the toolbox of genetically encoded UAAs in mammalian cells, improving the efficiency of their incorporation and developing innovative applications. Here, we provide our perspective on these recent developments and highlight the current challenges that must be overcome to realize the full potential of this technology.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 555
Author(s):  
Emily L. Gordon ◽  
Rebecca T. Kimball ◽  
Edward L. Braun

Phylogenomic analyses have revolutionized the study of biodiversity, but they have revealed that estimated tree topologies can depend, at least in part, on the subset of the genome that is analyzed. For example, estimates of trees for avian orders differ if protein-coding or non-coding data are analyzed. The bird tree is a good study system because the historical signal for relationships among orders is very weak, which should permit subtle non-historical signals to be identified, while monophyly of orders is strongly corroborated, allowing identification of strong non-historical signals. Hydrophobic amino acids in mitochondrially-encoded proteins, which are expected to be found in transmembrane helices, have been hypothesized to be associated with non-historical signals. We tested this hypothesis by comparing the evolution of transmembrane helices and extramembrane segments of mitochondrial proteins from 420 bird species, sampled from most avian orders. We estimated amino acid exchangeabilities for both structural environments and assessed the performance of phylogenetic analysis using each data type. We compared those relative exchangeabilities with values calculated using a substitution matrix for transmembrane helices estimated using a variety of nuclear- and mitochondrially-encoded proteins, allowing us to compare the bird-specific mitochondrial models with a general model of transmembrane protein evolution. To complement our amino acid analyses, we examined the impact of protein structure on patterns of nucleotide evolution. Models of transmembrane and extramembrane sequence evolution for amino acids and nucleotides exhibited striking differences, but there was no evidence for strong topological data type effects. However, incorporating protein structure into analyses of mitochondrially-encoded proteins improved model fit. Thus, we believe that considering protein structure will improve analyses of mitogenomic data, both in birds and in other taxa.


Sign in / Sign up

Export Citation Format

Share Document