scholarly journals Chorionic villus-derived mesenchymal stem cell-mediated autophagy promotes the proliferation and invasiveness of trophoblasts under hypoxia by activating the JAK2/STAT3 signalling pathway

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yijing Chu ◽  
Chengzhan Zhu ◽  
Chongyu Yue ◽  
Wei Peng ◽  
Weiping Chen ◽  
...  

Abstract Background Trophoblast dysfunction during pregnancy is fundamentally involved in preeclampsia. Several studies have revealed that human chorionic villous mesenchymal stem cells (CV-MSCs) could regulate trophoblasts function. Results To understand how human chorionic villous mesenchymal stem cells (CV-MSCs) regulate trophoblast function, we treated trophoblasts with CV-MSC supernatant under hypoxic conditions. Treatment markedly enhanced proliferation and invasion and augmented autophagy. Transcriptome and pathway analyses of trophoblasts before and after treatment revealed JAK2/STAT3 signalling as an upstream regulator. In addition, STAT3 mRNA and protein levels increased during CV-MSC treatment. Consistent with these findings, JAK2/STAT3 signalling inhibition reduced the autophagy, survival and invasion of trophoblasts, even in the presence of CV-MSCs, and blocking autophagy did not affect STAT3 activation in trophoblasts treated with CV-MSCs. Importantly, STAT3 overexpression increased autophagy levels in trophoblasts; thus, it positively regulated autophagy in hypoxic trophoblasts. Human placental explants also proved our findings by showing that STAT3 was activated and that LC3B-II levels were increased by CV-MSC treatment. Conclusion In summary, our data suggest that CV-MSC-dependent JAK2/STAT3 signalling activation is a prerequisite for autophagy upregulation in trophoblasts. Graphic abstract

2020 ◽  
Author(s):  
Yijing Chu ◽  
Chongyu Yue ◽  
Wei Peng ◽  
Weiping Chen ◽  
Yan Zhang ◽  
...  

Abstract Objectives Trophoblast dysfunction during pregnancy is fundamentally involved in preeclampsia. The aim of this study was to understand how human chorionic villous mesenchymal stem cells (CV-MSCs) operate in regulation of trophoblast function.Materials and Methods We treated trophoblasts with CV-MSC supernatant under hypoxic conditions, and transcriptome and pathway analyses of trophoblasts were performed. Western blotting and PCR analysis were used to examine the JAK2, STAT3 and autophagy associated protein expression levels in trophoblasts.Results The CV-MSC supernatant treatment markedly enhanced proliferation, invasion and autophagy. The RNA-seq revealed JAK2/STAT3 signalling as an upstream regulator, and STAT3 mRNA and protein levels increased during CV-MSC treatment. Inhibition of JAK2/STAT3 signalling reduced autophagy, survival and invasion of trophoblasts even in the presence of CV-MSCs, and blocking autophagy did not affect STAT3 activation in trophoblasts treated with CV-MSCs. Importantly, overexpression of STAT3 increased the levels of autophagy in trophoblasts; thus, it regulated positively autophagy in hypoxic trophoblasts. Human placental explants also proved our finding, in which STAT3 was activated and LC3B-II levels were increased by CV-MSC treatment.Conclusions Our data suggest that CV-MSC-dependent activation of JAK2/STAT3 signalling is a prerequisite for upregulation of autophagy in trophoblasts.


2020 ◽  
Author(s):  
Yijing Chu ◽  
Chongyu Yue ◽  
Wei Peng ◽  
Weiping Chen ◽  
Yan Zhang ◽  
...  

Abstract Objectives Trophoblast dysfunction during pregnancy is fundamentally involved in preeclampsia. The aim of this study was to understand how human chorionic villous mesenchymal stem cells (CV-MSCs) operate in regulation of trophoblast function. Materials and Methods We treated trophoblasts with CV-MSC supernatant under hypoxic conditions, and transcriptome and pathway analyses of trophoblasts were performed. Western blotting and PCR analysis were used to examine the JAK2, STAT3 and autophagy associated protein expression levels in trophoblasts. Results The CV-MSC supernatant treatment markedly enhanced proliferation, invasion and autophagy. The RNA-seq revealed JAK2/STAT3 signalling as an upstream regulator, and STAT3 mRNA and protein levels increased during CV-MSC treatment. Inhibition of JAK2/STAT3 signalling reduced autophagy, survival and invasion of trophoblasts even in the presence of CV-MSCs, and blocking autophagy did not affect STAT3 activation in trophoblasts treated with CV-MSCs. Importantly, overexpression of STAT3 increased the levels of autophagy in trophoblasts; thus, it regulated positively autophagy in hypoxic trophoblasts. Human placental explants also proved our finding, in which STAT3 was activated and LC3B-II levels were increased by CV-MSC treatment. Conclusions Our data suggest that CV-MSC-dependent activation of JAK2/STAT3 signalling is a prerequisite for upregulation of autophagy in trophoblasts.


2013 ◽  
Vol 304 (11) ◽  
pp. C1091-C1097 ◽  
Author(s):  
Takeshi Honda ◽  
Aiko Ishii ◽  
Makoto Inui

PDZRN3, a member of the PDZRN (or LNX) family of proteins, is essential for the differentiation of mesenchymal stem cells into myotubes, but it plays an inhibitory role in the differentiation of these cells into osteoblasts. Given that mesenchymal stem cells also differentiate into adipocytes, we examined the possible role of PDZRN3 in adipogenesis in mouse 3T3-L1 preadipocytes. The expression of PDZRN3 decreased at both the mRNA and protein levels during adipogenic differentiation. RNAi-mediated depletion of PDZRN3 enhanced the differentiation of 3T3-L1 cells into adipocytes as assessed on the basis of lipid accumulation. The upregulation of aP2 and CCAAT/enhancer-binding protein (C/EBP)-β during adipocyte differentiation was also enhanced in the PDZRN3-depleted cells, as was the induction of peroxisome proliferator-activated receptor-γ (PPARγ), an upstream regulator of aP2 and C/EBPα, at both the mRNA and protein levels. Among transcription factors that control the expression of PPARγ, we found that STAT5b, but not STAT5a, was upregulated in PDZRN3-depleted cells at both mRNA and protein levels. Tyrosine phosphorylation of STAT5b, but not that of STAT5a, was also enhanced at an early stage of differentiation by PDZRN3 depletion. In addition, the expression of C/EBPβ during the induction of differentiation was enhanced at the mRNA and protein levels in PDZRN3-depleted cells. Our results thus suggest that PDZRN3 negatively regulates adipogenesis in 3T3-L1 cells through downregulation of STAT5b and C/EBPβ and consequent suppression of PPARγ expression.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Daniela Bastianelli ◽  
Camilla Siciliano ◽  
Rosa Puca ◽  
Andrea Coccia ◽  
Colin Murdoch ◽  
...  

Mesenchymal stem cells (MSCs) represent a promising cell population for cell therapy and regenerative medicine applications. However, how variations in glucose are perceived by MSC pool is still unclear. Since, glucose metabolism is cell type and tissue dependent, this must be considered when MSCs are derived from alternative sources such as the heart. The zinc finger transcription factor Egr-1 is an important early response gene, likely to play a key role in the glucose-induced response. Our aim was to investigate how short-term changes inin vitroglucose concentrations affect multipotent cardiac tissue-derived MSCs (cMSCs) in a mouse model of Egr-1 KO (Egr-1−/−). Results showed that loss of Egr-1 does not significantly influence cMSC proliferation. In contrast, responses to glucose variations were observed in wt but not in Egr-1−/−cMSCs by clonogenic assay. Phenotype analysis by RT-PCR showed that cMSCs Egr-1−/−lost the ability to regulate the glucose transporters GLUT-1 and GLUT-4 and, as expected, the Egr-1 target genes VEGF, TGFβ-1, and p300. Acetylated protein levels of H3 histone were impaired in Egr-1−/−compared to wt cMSCs. We propose that Egr-1 acts as immediate glucose biological sensor in cMSCs after a short period of stimuli, likely inducing epigenetic modifications.


2020 ◽  
Author(s):  
Yijing Chu ◽  
Yan Zhang ◽  
Guoqiang Gao ◽  
Jun Zhou ◽  
Yang Lv ◽  
...  

Abstract Background: Human chorionic villous mesenchymal stem cells (CV-MSCs) are found to be a promising and effective treatment for tissue injury. Trophoblast dysfunction during pregnancies is significantly involved in the pathogenesis of preeclampsia (PE). This work was to understand how CV-MSCs regulated trophoblast function. Methods: In this study, we treated trophoblasts with CV-MSC-derived exosomes and RNA-seq analysis was used to understand the changes in trophoblasts. We examined the levels of TXNIP and β-catenin in trophoblasts by immunohistochemistry, western blot and qRT-PCR assays. Luciferase reporter assays and qRT-PCR assays were used to understand the role of miR135b-5p in the effects of CV-MSC-derived exosomes. The growth and invasion of trophoblasts was evaluated with the CCK-8 and transwell assays. Results: The treatment markedly enhanced the trophoblast proliferation and invasion. Furthermore, a significant decrease of TXNIP expression and inactivation of the β-catenin pathway in CV-MSCs exosomes-treated trophoblasts was observed. Consistent with these findings, TXNIP inhibition exhibited the same effect of promoting trophoblast proliferation and invasion as induced by CV-MSC-derived exosomes, also with the accompaniment of inactivation of β-catenin pathway. In addition, overexpression of TXNIP activated the β-catenin pathway in trophoblasts, and reduced the proliferation and invasion of trophoblasts. Importantly, miR135b-5p was found to be highly expressed in CV-MSC exosomes and interact with TXNIP. The miR-135b-5p overexpression significantly elevated the proliferation and invasion of trophoblasts, which could be attenuated by TXNIP overexpression. Conclusion: Our results suggest that TXNIP-dependent β-catenin pathway inactivation mediated by miR135b-5p which is delivered by CV-MSC-derived exosomes could promote the proliferation and invasion of trophoblasts.


2021 ◽  
Author(s):  
Xi Zhou ◽  
Junbo Li ◽  
Jin Wang ◽  
Huifang Yang ◽  
Jingzeng Wang ◽  
...  

Abstract Mesenchymal stem cells (MSCs) are widely used to treat and prevent liver ischemia–reperfusion injury (LIRI), which commonly occurs after liver surgery. Lin28 is an RNA-binding protein crucial for early embryonic development, stem cell differentiation/reprogramming, tumorigenesis, and metabolism. However, whether Lin28 can enhance metabolism in human placental MSCs (PMSCs) during hypoxia to improve the protective effect against LIRI remains unclear. First, a Lin28 overexpression construct was introduced into PMSCs; glucose metabolism, the expression of glucose metabolism - and PI3K-AKT pathway-related proteins, and the levels of microRNA Let-7 family members were examined using a glucose metabolism kit, western blots, and real-time quantitative PCR, respectively. Next, treatment with an AKT inhibitor was performed to understand the association of Lin28 with the PI3K-Akt pathway. Subsequently, AML12 cells were co-cultured with PMSCs to construct an in vitro model of PMSC protecting liver cells from hypoxia injury. Finally, C57BL/6J mice were used to establish a partial warm hepatic ischemia–reperfusion model in vivo. Lin28 increased the glycolysis capacity of PMSCs, allowing these cells to produce more energy under hypoxic conditions. Lin28 also activated PI3K-Akt signaling under hypoxic conditions, and AKT inhibition attenuated the effects of Lin28. In addition, Lin28 overexpression was found to protect cells against LIRI-induced liver damage, inflammation, and apoptosis and attenuate hypoxia-induced hepatocyte injury. Inconclusion, Lin28 enhances glucose metabolism under hypoxic conditions in PMSCs, thereby providing protective effects against LIRI via the activation of the PI3K-Akt signaling pathway. Our study first reported the application of gene-modified mesenchymal stem cell-based therapy in LIRI.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yicai Zhang ◽  
Yi Sun ◽  
Jinlong Liu ◽  
Yu Han ◽  
Jinglong Yan

The molecular mechanisms how bone marrow-derived mesenchymal stem cells (BMSCs) differentiate into osteoblast need to be investigated. MicroRNAs (miRNAs) contribute to the osteogenic differentiation of BMSCs. However, the effect of miR-346-5p on osteogenic differentiation of BMSCs is not clear. This study is aimed at elucidating the underlying mechanism by which miR-346-5p regulates osteogenic differentiation of human BMSCs. Results of alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining indicated that upregulation of miR-346-5p suppressed osteogenic differentiation of BMSCs, whereas downregulation of miR-346-5p enhanced this process. The protein levels of the osteoblastic markers Osterix and Runt-related transcription factor 2 (Runx2) were decreased in cells treated with miR-346-5p mimic at day 7 and day 14 after being differentiated. By contrast, downregulation of miR-346-5p elevated the protein levels of Osterix and Runx2. Moreover, a dual-luciferase reporter assay revealed that Transmembrane Protein 9 (TMEM9) was a target of miR-346-5p. In addition, the Western Blot results demonstrated that the TMEM9 protein level was significantly reduced by the miR-346-5p mimic whereas downregulation of miR-346-5p improved the protein level of TMEM9. These results together demonstrated that miR-346-5p served a key role in BMSC osteogenic differentiation of through targeting TMEM9, which may provide a novel target for clinical treatments of bone injury.


Sign in / Sign up

Export Citation Format

Share Document