scholarly journals Correction to: CRISPR/Cas: a potential gene-editing tool in the nervous system

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yanxia Gao ◽  
Kexin Gao ◽  
Hui Yang
Keyword(s):  
2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Yanxia Gao ◽  
Kexin Gao ◽  
Hui Yang

AbstractThe rapidly developmental RNA-guided CRISPR/Cas system is a powerful tool for RNA and DNA editing in a variety of cells from different species and makes a great contribution to gene function research, disease model generation and gene therapy development in the past few years. The ease of use, low cost and high efficiency of CRISPR/Cas make it commonly used in various conditions. In this review, we introduce the CRISPR/Cas system and its diverse applications in nervous system briefly, which provides a better understanding for its potential application values.


2021 ◽  
Vol 15 ◽  
Author(s):  
Dipankar J. Dutta ◽  
R. Douglas Fields

In the central nervous system, myelin is attached to the axon in the paranodal region by a trimolecular complex of Neurofascin155 (NF155) in the myelin membrane, interacting with Caspr1 and Contactin1 on the axolemma. Alternative splicing of a single Neurofascin transcript generates several different Neurofascins expressed by several cell types, but NF155, which is expressed by oligodendrocytes, contains a domain in the third fibronectinIII-like region of the molecule that is unique. The immunoglobulin 5–6 domain of NF155 is essential for binding to Contactin1, but less is known about the functions of the NF155-unique third fibronectinIII-like domain. Mutations and autoantibodies to this region are associated with several neurodevelopmental and demyelinating nervous system disorders. Here we used Crispr-Cas9 gene editing to delete a 9 bp sequence of NF155 in this unique domain, which has recently been identified as a thrombin binding site and implicated in plasticity of the myelin sheath. This small deletion results in dysmyelination, eversion of paranodal loops of myelin, substantial enlargement of the nodal gap, a complete loss of paranodal septate junctions, and mislocalization of Caspr1 and nodal sodium channels. The animals exhibit tremor and ataxia, and biochemical and mass spectrometric analysis indicates that while NF155 is transcribed and spliced normally, the NF155 protein is subsequently degraded, resulting in loss of the full length 155 kDa native protein. These findings reveal that this 9 bp region of NF155 in its unique third fibronectinIII-like domain is essential for stability of the protein.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Seyed Mohammad Miri ◽  
Elham Tafsiri ◽  
William Chi Shing Cho ◽  
Amir Ghaemi

Abstract Cancer immunotherapy has been emerged as a promising strategy for treatment of a broad spectrum of malignancies ranging from hematological to solid tumors. One of the principal approaches of cancer immunotherapy is transfer of natural or engineered tumor-specific T-cells into patients, a so called “adoptive cell transfer”, or ACT, process. Construction of allogeneic T-cells is dependent on the employment of a gene-editing tool to modify donor-extracted T-cells and prepare them to specifically act against tumor cells with enhanced function and durability and least side-effects. In this context, CRISPR technology can be used to produce universal T-cells, equipped with recombinant T cell receptor (TCR) or chimeric antigen receptor (CAR), through multiplex genome engineering using Cas nucleases. The robust potential of CRISPR-Cas in preparing the building blocks of ACT immunotherapy has broaden the application of such therapies and some of them have gotten FDA approvals. Here, we have collected the last investigations in the field of immuno-oncology conducted in partnership with CRISPR technology. In addition, studies that have addressed the challenges in the path of CRISPR-mediated cancer immunotherapy, as well as pre-treatment applications of CRISPR-Cas have been mentioned in detail.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Seyed Mohammad Miri ◽  
Elham Tafsiri ◽  
William Chi Shing Cho ◽  
Amir Ghaemi

An amendment to this paper has been published and can be accessed via the original article.


2021 ◽  
Vol 3 ◽  
Author(s):  
Vasco Meneghini ◽  
Marco Peviani ◽  
Marco Luciani ◽  
Giada Zambonini ◽  
Angela Gritti

Glial cells (astrocytes, oligodendrocytes, and microglia) are emerging as key players in several physiological and pathological processes of the central nervous system (CNS). Astrocytes and oligodendrocytes are not only supportive cells that release trophic factors or regulate energy metabolism, but they also actively modulate critical neuronal processes and functions in the tripartite synapse. Microglia are defined as CNS-resident cells that provide immune surveillance; however, they also actively contribute to shaping the neuronal microenvironment by scavenging cell debris or regulating synaptogenesis and pruning. Given the many interconnected processes coordinated by glial cells, it is not surprising that both acute and chronic CNS insults not only cause neuronal damage but also trigger complex multifaceted responses, including neuroinflammation, which can critically contribute to the disease progression and worsening of symptoms in several neurodegenerative diseases. Overall, this makes glial cells excellent candidates for targeted therapies to treat CNS disorders. In recent years, the application of gene editing technologies has redefined therapeutic strategies to treat genetic and age-related neurological diseases. In this review, we discuss the advantages and limitations of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based gene editing in the treatment of neurodegenerative disorders, focusing on the development of viral- and nanoparticle-based delivery methods for in vivo glial cell targeting.


2020 ◽  
Vol 20 ◽  
Author(s):  
Mahdi Barazesh ◽  
Shiva Mohammadi ◽  
Yadollah Bahrami ◽  
Pooneh Mokarram ◽  
Mohammad Hossein Morowvat ◽  
...  

Background: Neurodegenerative diseases are often the consequence of alterations in structures and functions of the Central Nervous System [CNS] in patients. Despite obtaining massive genomic information concerning the molecular basis of these diseases and since the neurological disorders are multifactorial, causal connections between pathological pathways at molecular level and CNS disorders development have remained obscure and need to be elucidated to a great extent. Objective: Animal models serve as accessible and valuable tools for understanding and discovering the roles of causative factors in the development of neurodegenerative disorders and finding appropriate treatments. Contrary to rodents and other small animals, large animals especially non-human primates [NHPs] are remarkably alike humans; hence, they establish suitable models for recapitulating the main human’s neuropathological manifestations that may not be seen in rodent models. Also, they serve as useful models to discover effective therapeutic targets for neurodegenerative disorders due to their similarity to humans in terms of physiology, evolutionary distance, anatomy, and behavior. Method: In this review, we recommend different strategies based on the CRISPR-Cas9 system for generating animal models of human neurodegenerative disorders and explain in vivo CRISPR-Cas9 delivery procedures of that are applied to disease models for therapeutic purposes. Results: With the emergence of CRISPR/Cas9 as a modern specific gene-editing technology in the field of genetic engineering, genetic modification procedures such as gene knock-in and knock-out have become increasingly easier compared to traditional gene targeting techniques. Unlike the old techniques, this versatile technology can efficiently generate transgenic large animal models without need to complicate lab instruments. Hence, these animals can accurately replicate the signs of neurodegenerative disorders. Conclusion: Preclinical applications of CRISPR/Cas9 gene-editing technology supply a unique opportunity to establish animal models of neurodegenerative disorders with high accuracy and facilitate perspectives for breakthroughs in the research on the nervous system disease therapy and drug discovery. Furthermore, the useful outcomes of CRISPR applications in various clinical phases are hopeful for their translation to the clinic in a short time.


2015 ◽  
Vol 15 (3) ◽  
pp. 1946-1959 ◽  
Author(s):  
Bin Liu ◽  
Huifen Xu ◽  
Jiangfang Miao ◽  
Andy Zhang ◽  
Xiaojin Kou ◽  
...  
Keyword(s):  

2019 ◽  
Vol 42 ◽  
Author(s):  
Kevin B. Clark

Abstract Some neurotropic enteroviruses hijack Trojan horse/raft commensal gut bacteria to render devastating biomimicking cryptic attacks on human/animal hosts. Such virus-microbe interactions manipulate hosts’ gut-brain axes with accompanying infection-cycle-optimizing central nervous system (CNS) disturbances, including severe neurodevelopmental, neuromotor, and neuropsychiatric conditions. Co-opted bacteria thus indirectly influence host health, development, behavior, and mind as possible “fair-weather-friend” symbionts, switching from commensal to context-dependent pathogen-like strategies benefiting gut-bacteria fitness.


Sign in / Sign up

Export Citation Format

Share Document