scholarly journals CRISPR-Cas, a robust gene-editing technology in the era of modern cancer immunotherapy

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Seyed Mohammad Miri ◽  
Elham Tafsiri ◽  
William Chi Shing Cho ◽  
Amir Ghaemi

Abstract Cancer immunotherapy has been emerged as a promising strategy for treatment of a broad spectrum of malignancies ranging from hematological to solid tumors. One of the principal approaches of cancer immunotherapy is transfer of natural or engineered tumor-specific T-cells into patients, a so called “adoptive cell transfer”, or ACT, process. Construction of allogeneic T-cells is dependent on the employment of a gene-editing tool to modify donor-extracted T-cells and prepare them to specifically act against tumor cells with enhanced function and durability and least side-effects. In this context, CRISPR technology can be used to produce universal T-cells, equipped with recombinant T cell receptor (TCR) or chimeric antigen receptor (CAR), through multiplex genome engineering using Cas nucleases. The robust potential of CRISPR-Cas in preparing the building blocks of ACT immunotherapy has broaden the application of such therapies and some of them have gotten FDA approvals. Here, we have collected the last investigations in the field of immuno-oncology conducted in partnership with CRISPR technology. In addition, studies that have addressed the challenges in the path of CRISPR-mediated cancer immunotherapy, as well as pre-treatment applications of CRISPR-Cas have been mentioned in detail.

2018 ◽  
Author(s):  
Mara Kornete ◽  
Romina Marone ◽  
Lukas T. Jeker

AbstractAdoptive cell transfer (ACT) is an important approach for basic research and emerges as an effective treatment for various diseases including infections and blood cancers. Direct genetic manipulation of primary immune cells opens up unprecedented research opportunities and could be applied to enhance cellular therapeutic products. Here, we report highly efficient genome engineering in primary murine T cells using a plasmid-based RNA-guided CRISPR system. We developed a straightforward approach to ablate genes in up to 90% of cells and to introduce precisely targeted single nucleotide polymorphisms (SNP) in up to 25% of the transfected primary T cells. We used gene editing-mediated allele switching to quantify homology directed repair (HDR), systematically optimize experimental parameters and map a native B cell epitope in primary T cells. Allele switching of a surrogate cell surface marker can be used to enrich cells with successful simultaneous editing of a second gene of interest. Finally, we applied the approach to correct two disease-causing mutations in the Foxp3 gene. Both repairing the cause of the scurfy syndrome, a 2bp insertion in Foxp3, and repairing the clinically relevant Foxp3K276X mutation restored Foxp3 expression in primary T cells.


Author(s):  
Xuejin Ou ◽  
Qizhi Ma ◽  
Wei Yin ◽  
Xuelei Ma ◽  
Zhiyao He

In recent years, immunotherapy has showed fantastic promise in pioneering and accelerating the field of cancer therapy and embraces unprecedented breakthroughs in clinical practice. The clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (CRISPR-Cas9) system, as a versatile gene-editing technology, lays a robust foundation to efficiently innovate cancer research and cancer therapy. Here, we summarize recent approaches based on CRISPR/Cas9 system for construction of chimeric antigen receptor T (CAR-T) cells and T cell receptor T (TCR-T) cells. Besides, we review the applications of CRISPR/Cas9 in inhibiting immune checkpoint signaling pathways and highlight the feasibility of CRISPR/Cas9 based engineering strategies to screen novel cancer immunotherapy targets. Conclusively, we discuss the perspectives, potential challenges and possible solutions in this vivid growing field.


2020 ◽  
Author(s):  
W. Ye ◽  
A Olsson-Brown ◽  
R. A. Watson ◽  
V. T. F. Cheung ◽  
R. D. Morgan ◽  
...  

1Abstract1.1BackgroundImmune checkpoint blockers (ICBs) activate CD8+ T cells to elicit anti-cancer activity but frequently lead to immune-related adverse events (irAEs). The relationship of irAE with baseline parameters and clinical outcome is unclear. We investigated associations between irAE development, CD8+ T cell receptor diversity and expression and clinical outcome in a non-trial setting.1.2MethodsPatients ≥18 years old with metastatic melanoma (MM) receiving combination ICB (ipilimumab plus nivolumab – cICB, n=60) or single-agent ICB (nivolumab/pembrolizumab – sICB, n=78) were prospectively recruited. We retrospectively evaluated the impact of irAEs on survival. This analysis was repeated in an independent cohort of MM patients treated at a separate institution (n=210, cICB:74, sICB:136). We performed RNA sequencing of CD8+ T cells isolated from patients prior to treatment, analysing T cell receptor clonality differential transcript expression according to irAE development.1.3Results48.6% of patients experienced treatment-related irAEs within the first 5 cycles of treatment. Development of irAE prior to the 5th cycle of ICB was associated with longer progression-free and overall survival (PFS, OS) in the primary cohort (log-rank test, PFS: P=0.00034; OS: P<0.0001), replicated in the secondary cohort (OS: P=0.00064). Across cohorts median survival for those patients not experiencing irAE was 14.4 (95% CI:9.6-19.5) months vs not-reached (95% CI:28.9 - Inf), P=3.0×10−7. Pre-treatment performance status and neutrophil count, but not BMI, were additional predictors of clinical outcome. Analysis of CD8+ T cells from 128 patients demonstrated irAE development was associated with increased T cell receptor diversity post-treatment (P=4.3×10−5). Development of irAE in sICB recipients was additionally associated with baseline differential expression of 224 transcripts (FDR<0.1), enriched in pro-inflammatory pathway genes including CYP4F3 and PTGS2.1.4ConclusionsEarly irAE development post-ICB is strongly associated with favourable survival in MM and increased diversity of peripheral CD8+ T cell receptors after treatment. irAE post-sICB is associated with pre-treatment upregulation of inflammatory pathways, indicating irAE development may reflect baseline immune activation states.Key messageImmune-related adverse events (irAEs) commonly occur in patients with metastatic melanoma treated with immune checkpoint blockade (ICB) therapy. In real world setting we find development of early irAEs post-ICB treatment is associated with survival benefit, indicative of a shared mechanism with anti-tumour efficacy. CD8+ T cells from patients who develop irAE show increased receptor diversity, and pre-treatment samples from patients who develop irAE post single-agent anti-PD1 show over-expression of inflammatory pathways, indicating baseline immune state can determine irAE development.


2016 ◽  
Vol 21 (8) ◽  
pp. 769-785 ◽  
Author(s):  
Emma S. Hickman ◽  
Martine E. Lomax ◽  
Bent K. Jakobsen

Evidence of adaptive immune responses in the prevention of cancer has been accumulating for decades. Spontaneous T-cell responses occur in multiple indications, bringing the study of de novo expressed cancer antigens to the fore and highlighting their potential as targets for cancer immunotherapy. Circumventing the immune-suppressive mechanisms that maintain tumor tolerance and driving an antitumor cytotoxic T-cell response in cancer patients may eradicate the tumor or block disease progression. Multiple strategies are being pursued to harness the cytotoxic potential of T cells clinically. Highly promising results are now emerging. The focus of this review is the target discovery process for cancer immune therapeutics based on affinity-matured T-cell receptors (TCRs). Target cancer antigens in the context of adoptive cell transfer technologies and soluble biologic agents are discussed. To appreciate the impact of TCR-based technology and understand the TCR discovery process, it is necessary to understand key differences between TCR-based therapy and other immunotherapy approaches. The review first summarizes key advances in the cancer immunotherapy field and then discusses the opportunities that TCR technology provides. The nature and breadth of molecular targets that are tractable to this approach are discussed, together with the challenges associated with finding them.


2021 ◽  
Vol 9 (11) ◽  
pp. 1252-1261
Author(s):  
Uri Greenbaum ◽  
Ecaterina I. Dumbrava ◽  
Amadeo B. Biter ◽  
Cara L. Haymaker ◽  
David S. Hong

2020 ◽  
Vol 12 (569) ◽  
pp. eaaw4744
Author(s):  
Siawosh K. Eskandari ◽  
Ina Sulkaj ◽  
Mariane B. Melo ◽  
Na Li ◽  
Hazim Allos ◽  
...  

Adoptive cell transfer of ex vivo expanded regulatory T cells (Tregs) has shown immense potential in animal models of auto- and alloimmunity. However, the effective translation of such Treg therapies to the clinic has been slow. Because Treg homeostasis is known to require continuous T cell receptor (TCR) ligation and exogenous interleukin-2 (IL-2), some investigators have explored the use of low-dose IL-2 injections to increase endogenous Treg responses. Systemic IL-2 immunotherapy, however, can also lead to the activation of cytotoxic T lymphocytes and natural killer cells, causing adverse therapeutic outcomes. Here, we describe a drug delivery platform, which can be engineered to autostimulate Tregs with IL-2 in response to TCR-dependent activation, and thus activate these cells in sites of antigen encounter. To this end, protein nanogels (NGs) were synthesized with cleavable bis(N-hydroxysuccinimide) cross-linkers and IL-2/Fc fusion (IL-2) proteins to form particles that release IL-2 under reducing conditions, as found at the surface of T cells receiving stimulation through the TCR. Tregs surface-conjugated with IL-2 NGs were found to have preferential, allograft-protective effects relative to unmodified Tregs or Tregs stimulated with systemic IL-2. We demonstrate that murine and human NG–modified Tregs carrying an IL-2 cargo perform better than conventional Tregs in suppressing alloimmunity in murine and humanized mouse allotransplantation models. In all, the technology presented in this study has the potential to improve Treg transfer therapy by enabling the regulated spatiotemporal provision of IL-2 to antigen-primed Tregs.


2018 ◽  
Vol 23 (6) ◽  
pp. 850-858.e4 ◽  
Author(s):  
Atsutaka Minagawa ◽  
Toshiaki Yoshikawa ◽  
Masaki Yasukawa ◽  
Akitsu Hotta ◽  
Mihoko Kunitomo ◽  
...  

2018 ◽  
Vol 24 (1) ◽  
pp. 78-83 ◽  
Author(s):  
Yan-Bei Ren ◽  
Shang-Jun Sun ◽  
Shuang-Yin Han

T-cell therapy using genetically engineered T cells modified with either T cell receptor or chimeric antigen receptor holds great promise for cancer immunotherapy. The concerns about its toxicities still remain despite recent successes in clinical trials. Temporal and spatial control of the engineered therapeutic T cells may improve the safety profile of these treatment regimens. To achieve these goals, numerous approaches have been tested and utilized including the incorporation of a suicide gene, the switch-mediated activation, the combinatorial antigen recognition, etc. This review will summarize the toxicities caused by engineered T cells and novel strategies to overcome them.


Sign in / Sign up

Export Citation Format

Share Document