scholarly journals A residential maintenance-free long-term activity monitoring system for healthcare applications

Author(s):  
Xenofon Fafoutis ◽  
Evgeny Tsimbalo ◽  
Evangelos Mellios ◽  
Geoffrey Hilton ◽  
Robert Piechocki ◽  
...  
Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 966-P
Author(s):  
ATSUSHI FUJIYA ◽  
TOSHIKI KIYOSE ◽  
TAIGA SHIBATA ◽  
HIROSHI SOBAJIMA

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 986
Author(s):  
Hongru Li ◽  
Guiling Sun ◽  
Yue Li ◽  
Runzhuo Yang

The purpose of wearable technology is to use multimedia, sensors, and wireless communication to integrate specific technology into user clothes or accessories. With the help of various sensors, the physiological monitoring system can collect, process, and transmit physiological signals without causing damage. Wearable technology has been widely used in patient monitoring and people’s health management because of its low-load, mobile, and easy-to-use characteristics, and it supports long-term continuous work and can carry out wireless transmissions. In this paper, we established a Wi-Fi-based physiological monitoring system that can accurately measure heart rate, body surface temperature, and motion data and can quickly detect and alert the user about abnormal heart rates.


Author(s):  
Demetrio Fabian Garcia Nocetti ◽  
Pliar Duran Hernandez ◽  
Martin Fuentes Cruz ◽  
Martin Fuentes Cano ◽  
Adalberto Joel Duran Ortega

2019 ◽  
Vol 11 (6) ◽  
pp. 1716 ◽  
Author(s):  
Luciano Raso ◽  
Jan Kwakkel ◽  
Jos Timmermans

Climate change raises serious concerns for policymakers that want to ensure the success of long-term policies. To guarantee satisfactory decisions in the face of deep uncertainties, adaptive policy pathways might be used. Adaptive policy pathways are designed to take actions according to how the future will actually unfold. In adaptive pathways, a monitoring system collects the evidence required for activating the next adaptive action. This monitoring system is made of signposts and triggers. Signposts are indicators that track the performance of the pathway. When signposts reach pre-specified trigger values, the next action on the pathway is implemented. The effectiveness of the monitoring system is pivotal to the success of adaptive policy pathways, therefore the decision-makers would like to have sufficient confidence about the future capacity to adapt on time. “On time” means activating the next action on a pathway neither so early that it incurs unnecessary costs, nor so late that it incurs avoidable damages. In this paper, we show how mapping the relations between triggers and the probability of misclassification errors inform the level of confidence that a monitoring system for adaptive policy pathways can provide. Specifically, we present the “trigger-probability” mapping and the “trigger-consequences” mappings. The former mapping displays the interplay between trigger values for a given signpost and the level of confidence regarding whether change occurs and adaptation is needed. The latter mapping displays the interplay between trigger values for a given signpost and the consequences of misclassification errors for both adapting the policy or not. In a case study, we illustrate how these mappings can be used to test the effectiveness of a monitoring system, and how they can be integrated into the process of designing an adaptive policy.


Author(s):  
Manish Chaudhary

As the technology changing every year so, there has been an attempt to apply the new technology in numerous areas to increase the quality of human life. One of the main fields of research that has seen an implementation of the technology is the healthcare sector. Consequently, our paper is an effort to solve a healthcare problem currently people are facing. Main objective of our paper is to enterprise a remote healthcare system. It covers of three key parts. The first part is, detection of patient’s condition with the proposed system, second is to storing data on cloud storage and the last part is to provide the data for isolated viewing. Remote observing of the data empowers a doctor or custodian to television a patient’s health advancement from anywhere. In this project, we have obtainable an IoT architecture personalized for healthcare applications. The main motive of this scheme is to come up with a Remote Health Monitoring System that will completed with locally available sensors with a view to manufacture it reasonable for everybody


Sign in / Sign up

Export Citation Format

Share Document