scholarly journals Double sink energy hole avoidance strategy for wireless sensor network

Author(s):  
Suxia Chen ◽  
Quanzheng Huang ◽  
Yang Zhang ◽  
Xin Li

Abstract To solve the energy hole problem in wireless sensor networks with double sinks, a double sink energy hole avoidance strategy is proposed. The main idea is that two data sinks are set at fixed positions on both sides of the rectangular network to collect nodes data in the corresponding area of the network. In the network, sensor nodes are organized in non-uniform clusters. Clusters close to sink have a smaller cluster radius, and clusters far from sink have a larger cluster radius. According to the results of threshold training, monitoring area of double sink is dynamically adjusted based on the difference of energy consumption and load of nodes in the double sink monitoring area, so that the energy consumption load of nodes in the double sink monitoring area tends to be the same, so as to avoid the premature occurrence of energy hole phenomenon in the area with large load, leading to network failure. The experimental results demonstrate that the strategy proposed in this paper can efficiently balance the energy dissipation of double sink and prolong the network energy utilization efficiency and network lifetime.

Author(s):  
Amarasimha T. ◽  
V. Srinivasa Rao

Wireless sensor networks are used in machine learning for data communication and classification. Sensor nodes in network suffer from low battery power, so it is necessary to reduce energy consumption. One way of decreasing energy utilization is reducing the information transmitted by an advanced machine learning process called support vector machine. Further, nodes in WSN malfunction upon the occurrence of malicious activities. To overcome these issues, energy conserving and faulty node detection WSN is proposed. SVM optimizes data to be transmitted via one-hop transmission. It sends only the extreme points of data instead of transmitting whole information. This will reduce transmitting energy and accumulate excess energy for future purpose. Moreover, malfunction nodes are identified to overcome difficulties on data processing. Since each node transmits data to nearby nodes, the misbehaving nodes are detected based on transmission speed. The experimental results show that proposed algorithm provides better results in terms of reduced energy consumption and faulty node detection.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3319 ◽  
Author(s):  
Liangxiong Wei ◽  
Weijie Sun ◽  
Haixiang Chen ◽  
Ping Yuan ◽  
Feng Yin ◽  
...  

With the quick development of Internet of Things (IoT), one of its important supporting technologies, i.e., wireless sensor networks (WSNs), gets much more attention. Neighbor discovery is an indispensable procedure in WSNs. The existing deterministic neighbor discovery algorithms in WSNs ensure that successful discovery can be obtained within a given period of time, but the average discovery delay is long. It is difficult to meet the need for rapid discovery in mobile low duty cycle environments. In addition, with the rapid development of IoT, the node densities of many WSNs greatly increase. In such scenarios, existing neighbor discovery methods fail to satisfy the requirement in terms of discovery latency under the condition of the same energy consumption. This paper proposes a group-based fast neighbor discovery algorithm (GBFA) to address the issues. By carrying neighbor information in beacon packet, the node knows in advance some potential neighbors. It selects more energy efficient potential neighbors and proactively makes nodes wake up to verify whether these potential neighbors are true neighbors, thereby speeding up neighbor discovery, improving energy utilization efficiency and decreasing network communication load. The evaluation results indicate that, compared with other methods, GBFA decreases the average discovery latency up to 10 . 58 % at the same energy budget.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 725
Author(s):  
V Appala Raju ◽  
V Sri Harsha ◽  
N Bhanu Deepthi ◽  
N Prasanth

Wireless sensor networks play a key role in communication. They are comprised of hundreds sensor nodes with limited energy. So energy utilization major issue in WSN for performing the given task. So most of the protocols are concentrate on energy consumption .Zonal mechanism is one popular WSN routing technique.    In this work we are mostly concentrating on optimization of stable election protocol for heterogeneous wireless sensor networks and compare the performance with LEACH and SEP. Most of the work to find stability period, alive nodes and dead nodes, throughput in LEACH, SEP, ZSEP.  We are stimulated in MATLAB tool. Stimulation results prove that improvement in stability period and through put is better in ZSEP when compared to LEACH and SEP.  


2017 ◽  
Vol 13 (2) ◽  
pp. 155014771769324 ◽  
Author(s):  
Zeyu Sun ◽  
Chuanfeng Li ◽  
Xiaofei Xing ◽  
Huihui Wang ◽  
Ben Yan ◽  
...  

In the process of the wireless sensor network research, the issue on the energy consumption and coverage is an essential and critical one. According to the characteristic of the sensor nodes, it is homogeneous, and we proposed the k-degree coverage algorithm based on optimization nodes deployment. First, the algorithm gives the solving procedure of the maximum seamless coverage ratio, when the three-node joint coverage has been provided. Second, when the sensor nodes are covering the monitoring area, the algorithm gives the solving procedure of the expected coverage quality and the judgment methods of the coverage ratio, when the nodes are compared with the nearby ones. And when there is redundancy coverage in the given monitoring area, we have given the solving procedure of any sensor nodes that exist in the redundant nodes coverage. Finally, using the simulation experiment, the results of the coverage algorithm based on optimization nodes deployment are compared with other algorithms in terms of the coverage quality and the network lifetime, the performance indexes have enhanced to 13.36% and 12.92% on average. Thus, the effectiveness and viability of the coverage algorithm based on optimization nodes deployment have been proved.


2019 ◽  
Vol 8 (4) ◽  
pp. 5543-5550

A mobile sink, which is used to fetch data from various sensors to prevent the energy-hole problem or hotspot in WSN. To avoid the delay sustained by calling on the sensors a mobile sink is allowed to visit which is called as meeting points and the remaining nodes deliver their data to nearest rendezvous point. The improvement of sink’s data collecting method as well as the maximization of lifespan of the network is done by discovering a most favorable set of meeting points. However, it is very difficult to discover the assigned meeting points and moving way of mobile sink when the sensor produces data roughly. We propose an ultra-modern ACO based mobile sink data gathering in WSN. The important aims of the suggested algorithm are to elongate the existence of network and to reduce the delay in fetching data from sensor nodes. The algorithm also follows to again select the rendezvous points in order to stable the energy utilization of the sensor nodes.


Author(s):  
Piyush Rawat ◽  
Siddhartha Chauhan

Background and Objective: The functionalities of wireless sensor networks (WSN) are growing in various areas, so to handle the energy consumption of network in an efficient manner is a challenging task. The sensor nodes in the WSN are equipped with limited battery power, so there is a need to utilize the sensor power in an efficient way. The clustering of nodes in the network is one of the ways to handle the limited energy of nodes to enhance the lifetime of the network for its longer working without failure. Methods: The proposed approach is based on forming a cluster of various sensor nodes and then selecting a sensor as cluster head (CH). The heterogeneous sensor nodes are used in the proposed approach in which sensors are provided with different energy levels. The selection of an efficient node as CH can help in enhancing the network lifetime. The threshold function and random function are used for selecting the cluster head among various sensors for selecting the efficient node as CH. Various performance parameters such as network lifespan, packets transferred to the base station (BS) and energy consumption are used to perform the comparison between the proposed technique and previous approaches. Results and Discussion: To validate the working of the proposed technique the simulation is performed in MATLAB simulator. The proposed approach has enhanced the lifetime of the network as compared to the existing approaches. The proposed algorithm is compared with various existing techniques to measure its performance and effectiveness. The sensor nodes are randomly deployed in a 100m*100m area. Conclusion: The simulation results showed that the proposed technique has enhanced the lifespan of the network by utilizing the node’s energy in an efficient manner and reduced the consumption of energy for better network performance.


Author(s):  
Chinedu Duru ◽  
Neco Ventura ◽  
Mqhele Dlodlo

Background: Wireless Sensor Networks (WSNs) have been researched to be one of the ground-breaking technologies for the remote monitoring of pipeline infrastructure of the Oil and Gas industry. Research have also shown that the preferred deployment approach of the sensor network on pipeline structures follows a linear array of nodes, placed a distance apart from each other across the infrastructure length. The linear array topology of the sensor nodes gives rise to the name Linear Wireless Sensor Networks (LWSNs) which over the years have seen themselves being applied to pipelines for effective remote monitoring and surveillance. This paper aims to investigate the energy consumption issue associated with LWSNs deployed in cluster-based fashion along a pipeline infrastructure. Methods: Through quantitative analysis, the study attempts to approach the investigation conceptually focusing on mathematical analysis of proposed models to bring about conjectures on energy consumption performance. Results: From the derived analysis, results have shown that energy consumption is diminished to a minimum if there is a sink for every placed sensor node in the LWSN. To be precise, the analysis conceptually demonstrate that groups containing small number of nodes with a corresponding sink node is the approach to follow when pursuing a cluster-based LWSN for pipeline monitoring applications. Conclusion: From the results, it is discovered that energy consumption of a deployed LWSN can be decreased by creating groups out of the total deployed nodes with a sink servicing each group. In essence, the smaller number of nodes each group contains with a corresponding sink, the less energy consumed in total for the entire LWSN. This therefore means that a sink for every individual node will attribute to minimum energy consumption for every non-sink node. From the study, it can be concurred that energy consumption of a LWSN is inversely proportional to the number of sinks deployed and hence the number of groups created.


Author(s):  
Rekha Goyat ◽  
Mritunjay Kumar Rai ◽  
Gulshan Kumar ◽  
Hye-Jin Kim ◽  
Se-Jung Lim

Background: Wireless Sensor Networks (WSNs) is considered one of the key research area in the recent. Various applications of WSNs need geographic location of the sensor nodes. Objective: Localization in WSNs plays an important role because without knowledge of sensor nodes location the information is useless. Finding the accurate location is very crucial in Wireless Sensor Networks. The efficiency of any localization approach is decided on the basis of accuracy and localization error. In range-free localization approaches, the location of unknown nodes are computed by collecting the information such as minimum hop count, hop size information from neighbors nodes. Methods: Although various studied have been done for computing the location of nodes but still, it is an enduring research area. To mitigate the problems of existing algorithms, a range-free Improved Weighted Novel DV-Hop localization algorithm is proposed. Main motive of the proposed study is to reduced localization error with least energy consumption. Firstly, the location information of anchor nodes is broadcasted upto M hop to decrease the energy consumption. Further, a weight factor and correction factor are introduced which refine the hop size of anchor nodes. Results: The refined hop size is further utilized for localization to reduces localization error significantly. The simulation results of the proposed algorithm are compared with other existing algorithms for evaluating the effectiveness and the performance. The simulated results are evaluated in terms localization error and computational cost by considering different parameters such as node density, percentage of anchor nodes, transmission range, effect of sensing field and effect of M on localization error. Further statistical analysis is performed on simulated results to prove the validation of proposed algorithm. A paired T-test is applied on localization error and localization time. The results of T-test depicts that the proposed algorithm significantly improves the localization accuracy with least energy consumption as compared to other existing algorithms like DV-Hop, IWCDV-Hop, and IDV-Hop. Conclusion: From the simulated results, it is concluded that the proposed algorithm offers 36% accurate localization than traditional DV-Hop and 21 % than IDV-Hop and 13% than IWCDV-Hop.


Author(s):  
Mohit Kumar ◽  
Sonu Mittal ◽  
Md. Amir Khusru Akhtar

Background: This paper presents a novel Energy Efficient Clustering and Routing Algorithm (EECRA) for WSN. It is a clustering-based algorithm that minimizes energy dissipation in wireless sensor networks. The proposed algorithm takes into consideration energy conservation of the nodes through its inherent architecture and load balancing technique. In the proposed algorithm the role of inter-cluster transmission is not performed by gateways instead a chosen member node of respective cluster is responsible for data forwarding to another cluster or directly to the sink. Our algorithm eases out the load of the gateways by distributing the transmission load among chosen sensor node which acts as a relay node for inter-cluster communication for that round. Grievous simulations show that EECRA is better than PBCA and other algorithms in terms of energy consumption per round and network lifetime. Objective: The objective of this research lies in its inherent architecture and load balancing technique. The sole purpose of this clustering-based algorithm is that it minimizes energy dissipation in wireless sensor networks. Method: This algorithm is tested with 100 sensor nodes and 10 gateways deployed in the target area of 300m × 300m. The round assumed in this simulation is same as in LEACH. The performance metrics used for comparisons are (a) network lifetime of gateways and (b) energy consumption per round by gateways. Our algorithm gives superior result compared to LBC, EELBCA and PBCA. Fig 6 and Fig 7 shows the comparison between the algorithms. Results: The simulation was performed on MATLAB version R2012b. The performance of EECRA is compared with some existing algorithms like PBCA, EELBCA and LBCA. The comparative analysis shows that the proposed algorithm outperforms the other existing algorithms in terms of network lifetime and energy consumption. Conclusion: The novelty of this algorithm lies in the fact that the gateways are not responsible for inter-cluster forwarding, instead some sensor nodes are chosen in every cluster based on some cost function and they act as a relay node for data forwarding. Note the algorithm does not address the hot-spot problem. Our next endeavor will be to design an algorithm with consideration of hot-spot problem.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Mingxin Yang ◽  
Jingsha He ◽  
Yuqiang Zhang

Due to limited resources in wireless sensor nodes, energy efficiency is considered as one of the primary constraints in the design of the topology of wireless sensor networks (WSNs). Since data that are collected by wireless sensor nodes exhibit the characteristics of temporal association, data fusion has also become a very important means of reducing network traffic as well as eliminating data redundancy as far as data transmission is concerned. Another reason for data fusion is that, in many applications, only some of the data that are collected can meet the requirements of the sink node. In this paper, we propose a method to calculate the number of cluster heads or data aggregators during data fusion based on the rate-distortion function. In our discussion, we will first establish an energy consumption model and then describe a method for calculating the number of cluster heads from the point of view of reducing energy consumption. We will also show through theoretical analysis and experimentation that the network topology design based on the rate-distortion function is indeed more energy-efficient.


Sign in / Sign up

Export Citation Format

Share Document