scholarly journals The control algorithm of whole angle mode for HRG based on the vector composition

Author(s):  
Wanliang Zhao ◽  
Yuxiang Cheng ◽  
Shaoliang Li ◽  
Lijun Song

AbstractThe Hemispherical Resonator Gyroscope (HRG) has many advantages such as high precision, high reliability and long life-time, it is widely used in the space-launcher and the satellites. The HRG has been mechanized to operate in the distinct operating modes, the Force to Rebalanced (FTR) mode and the Whole Angle (WA) mode. In the paper, different from the traditional control algorithm is based on average methods which usually used for the WA mode, a new electrostatic control algorithm is presented, which based on the vector composition and decomposition method to control the equivalent drive force in order to track the phase of the standing wave. The mathematics model and the control algorithm are presented in the paper, and the hardware experimental circuit system is implemented, the HRG has a range of more than 300°/s with the linearity of 40 ppm. Meanwhile, the energy transition efficiency increases by an order of magnitude.

2020 ◽  
Author(s):  
Wanliang Zhao ◽  
Yuxiang Cheng ◽  
Shaoliang Li ◽  
Lijun Song

Abstract The Hemispherical Resonator Gyroscope (HRG) has many advantages such as high precision, high reliability and long life-time, it is widely used in the space-launcher and the satellites. The HRG has been mechanized to operate in two the distinct operating modes, the Force to Rebalanced (FTR) mode and the Whole Angle (WA) mode. Different from the traditional control algorithm is based on average methods which usually used for WA mode, in the paper, a new electrostatic control algorithm is presented, which based on the vector composition and decomposition method to control the equivalent drive force in order to track the phase of the standing wave. The mathematics model and the control algorithm are presented in the paper. And the hardware experimental circuit system is implemented, the HRG has a range of more than 300°/s with the linearity of 40 ppm. Meanwhile, the energy transition efficiency increases by an order of magnitude, rather than the average methods.


2021 ◽  
Author(s):  
Tran Nguyet Ngo ◽  
Lee Thomas ◽  
Kavitha Raghavendra ◽  
Terry Wood

Abstract Transporting large volumes of gas over long distances from further and deeper waters remains a significant challenge in making remote offshore gas field developments technologically and economically viable. The conventional development options include subsea compression, floating topside with topside compression and pipeline tie-back to shore, or floating liquefied natural gas vessels. However, these options are CAPEX and OPEX intensive and require high energy consumption. Demand for a lower emission solution is increasingly seen as the growing trend of global energy transition. Pseudo Dry Gas (PDG) technology is being developed by Intecsea, Worley Group and The Oil & Gas Technology Centre (Aberdeen) and tested in collaboration with Cranfield University. This is applied to develop stranded or remote gas reserves by removing fluids at the earliest point of accumulation at multiple locations, resulting in near dry gas performance. This technology aims to solve liquid management issues and subsequently allows for energy efficient transportation of the subsea gas enabling dramatic reductions in emissions. The PDG prototype tested using the Flow Loop facilities at Cranfield University has demonstrated the concept’s feasibility. Due to a greater amount of gas recovered with a much lower power requirement, the CO2 emissions per ton of gas produced via the PDG concept is by an order of magnitude lower than conventional methods. This study showed a reduction of 65% to 80% against standard and alternative near future development options. The paper considers innovative technology and a value proposition for the Pseudo Dry Gas concept based on a benchmarked study of a remote offshore gas field. The basin was located in 2000m of water depth, with a 200km long subsea tie-back. To date the longest tieback studied was 350km. It focused on energy consumption and carbon emission aspects. The conclusion is that decarbonisation of energy consumption is technically possible and can be deployed subsea to help meet this future challenge and push the envelope of subsea gas tie-backs.


Author(s):  
D. Croccolo ◽  
T. M. Brugo ◽  
M. De Agostinis ◽  
S. Fini ◽  
G. Olmi

As electronics keeps on its trend towards miniaturization, increased functionality and connectivity, the need for improved reliability capacitors is growing rapidly in several industrial compartments, such as automotive, medical, aerospace and military. Particularly, recent developments of the automotive compartment, mostly due to changes in standards and regulations, are challenging the capabilities of capacitors in general, and especially film capacitors. Among the required features for a modern capacitor are the following: (i) high reliability under mechanical shock, (ii) wide working temperature range, (iii) high insulation resistance, (iv) small dimensions, (v) long expected life time and (vi) high peak withstanding voltage. This work aims at analyzing the key features that characterize the mechanical response of the capacitor towards temperature changes. Firstly, all the key components of the capacitor have been characterized, in terms of strength and stiffness, as a function of temperature. These objectives have been accomplished by means of several strain analysis methods, such as strain gauges, digital image correlation (DIC) or dynamic mechanical analysis (DMA). All the materials used to manufacture the capacitor, have been characterized, at least, with respect to their Young’s modulus and Poisson’s ratio. Then, a three-dimensional finite element model of the whole capacitor has been set up using the ANSYS code. Based on all the previously collected rehological data, the numerical model allowed to simulate the response in terms of stress and strain of each of the capacitor components when a steady state thermal load is applied. Due to noticeable differences between the thermal expansion coefficients of the capacitor components, stresses and strains build up, especially at the interface between different components, when thermal loads are applied to the assembly. Therefore, the final aim of these numerical analyses is to allow the design engineer to define structural optimization strategies, aimed at reducing the mechanical stresses on the capacitor components when thermal loads are applied.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1516
Author(s):  
Jung Hyun Choi ◽  
Kangwagye Samuel ◽  
Kanghyun Nam ◽  
Sehoon Oh

Nowadays, mobile robot platforms are utilized in various fields not only for transportation but also for other diverse services such as industrial, medical and, sports, etc. Mobile robots are also an emerging application as sports field robots, where they can help serve players or even play the games. In this paper, a novel caddie robot which can autonomously follow the golfer as well as provide useful information such as golf course navigation system and weather updates, is introduced. The locomotion of the caddie robot is designed with two modes: autonomous human following mode and manual driving mode. The transition between each mode can be achieved manually or by an algorithm based on the velocity, heading angle, and inclination of the ground surface. Moreover, the transition to manual mode is activated after a caddie robot has recognized the human intention input by hand. In addition, the advanced control algorithm along with a trajectory generator for the caddie robot are developed taking into consideration the locomotion modes. Experimental results show that the proposed strategies to drive various operating modes are efficient and the robot is verified to be utilized in the golf course.


Author(s):  
V. I. Goldfarb ◽  
V. M. Spiridonov ◽  
N. S. Golubkov

Abstract Actuator rotation sometimes is required to transmit considerable torques at low speeds in a limited angular range. Such operating conditions are typical, for example, for the rotational drives of gas pipeline stop valves. These conditions are made worse by increased torques requried at the initial instant of motion when the torque is 1.3 to 1.5 times greater than the nominal torque, and by the range of operating temperatures of −60°C to +50°C. A number of gearboxes with a spiroid gear mesh were developed to satisfy these conditions for different torques (i.e. for different standard stop valves), with the steel spiroid pair case-hardened to 60–62 hardness Rc. A set of numerical studies had been conducted in order to choose gear design parameters and other elements of the gearbox. Experimental research performed using special testing rigs for definite operating modes showed high reliability and wear resistance of the drives developed and their high durability compared to known ones which is of great importance for given application domain.


2014 ◽  
Vol 621 ◽  
pp. 357-364
Author(s):  
Yong Mei Wang ◽  
Xi Gui Wang

With the development of computer technology, communication technology, electronic technology and automatic control technology, computer control technology widespread application, has been widely used in iron and steel, petroleum, chemical, electric power, building materials, machinery manufacturing, automotive, textile, transportation and other industries. Controlled by computer, we can realize the control of high reliability, process visualization, remote monitoring, data storage and processing. The simulation of PID control algorithm, and focuses on the study and analysis of the digital PID control algorithm, the marine gear lube oil temperature control system model, the three parameters of digital PID: proportional coefficient, integral constant, differential constant on the control system performance was also analyzed.


2018 ◽  
Vol 28 (01) ◽  
pp. 1950012 ◽  
Author(s):  
Ebrahim Babaei ◽  
Mohammad Shadnam Zarbil ◽  
Elias Shokati Asl

In this paper, a developed structure for DC–DC quasi-Z-source (QZS) converters is proposed. First, the proposed two-stage structure is presented and analyzed. Then, the proposed structure is extended to [Formula: see text] stages and its relations are calculated. Compared with other conventional structures, the proposed structure has higher voltage gain and higher reliability. The proposed topology is suitable for high power applications. To have the correct performance of conventional QZS converter, all impedance network elements must be intact. In the case of small failure in one of the elements, the operation of the whole system is disrupted. The proposed structure has high reliability because when one stage fails, the fault management system separates that stage from the other stages and the remaining stages continue to transmit power. In this paper, in addition to analyzing the operation of the proposed converter in different operating modes, calculations of voltage gain, voltage stresses across capacitors and reliability analysis are also presented. Reliability is calculated according to well-known Markov model. Moreover, a comprehensive comparison in terms of voltage gain and reliability is made between the proposed converter and the other conventional structures. Also, the rating values of inductors and capacitors are designed. Finally, experimental and simulation results are presented by using power system computer-aided design (PSCAD) software to verify the theories.


2021 ◽  
Vol 1111 (1) ◽  
pp. 012001
Author(s):  
A R Akhmetshin ◽  
K V Suslov ◽  
N P Astashkov ◽  
V A Olentsevich ◽  
M G Shtayger ◽  
...  

2017 ◽  
Vol 897 ◽  
pp. 489-492 ◽  
Author(s):  
Dethard Peters ◽  
Thomas Aichinger ◽  
Thomas Basler ◽  
Wolfgang Bergner ◽  
Daniel Kueck ◽  
...  

A detailed analysis of the typical static and dynamic performance of the new developed Infineon 1200V CoolSiCTM MOSFET is shown which is designed for an on-resistance of 45 mΩ. In order to be compatible to various standard gate drivers the gate voltage range is designed for-5 V in off-state and +15 V in on-state. Long term gate oxide life time tests reveal that the extrinsic failure evolution follows the linear E-model which allows a confident prediction of the failure rate within the life time of the device of 0.2 ppm in 20 years under specified use condition.


Sign in / Sign up

Export Citation Format

Share Document