scholarly journals Branched chain amino acids alter fatty acid profile in colostrum of sows fed a high fat diet

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chang Ma ◽  
Yajng Liu ◽  
Shaoshuai Liu ◽  
Crystal L. Lévesque ◽  
Fengqi Zhao ◽  
...  
2013 ◽  
Vol 38 (8) ◽  
pp. 836-843 ◽  
Author(s):  
Tianrun Li ◽  
Leiluo Geng ◽  
Xin Chen ◽  
Miranda Miskowiec ◽  
Xuan Li ◽  
...  

Nonalcoholic steatohepatitis (NASH) is a prevalent disease in countries around the world. The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine cannot be synthesized by the body and have been shown to promote muscle buildup; thus, it is logical to suggest that BCAAs can reduce fat deposition in the body. We used gonadectomized rats fed a high-fat diet to investigate the effects of BCAAs on lipid metabolism over an 8-week experimental period. Body composition, tissue histology, plasma lipid indices, and hormone levels were examined. We demonstrated that the body weights of rats were not significantly decreased but the mesenteric fat was significantly decreased (p < 0.05) in BCAA-treated rats. In addition, BCAAs decreased plasma lipid levels and fat deposition in the liver. At week 4, when the untreated rats displayed macrovesicular steatosis, BCAA-treated rats had only macrovesicular droplets in their hepatocytes. At week 8, when the untreated rat livers displayed profound inflammation and cirrhosis, BCAA-treated rat livers remained in the macrovesicular stage of steatosis. BCAAs induced higher blood glucose and plasma insulin levels (p < 0.05). BCAAs also improved liver blood flow by increasing mean arterial blood pressure and decreasing portal pressure, which helped delay the change in blood flow pattern to that of cirrhosis. BCAAs also induced the skeletal muscle to express higher levels of branched-chain α-keto acid dehydrogenase E1α, which indicates an enhanced metabolic capacity of BCAAs in muscle tissue. This study clearly demonstrates the effects of BCAAs on the amelioration of fat deposition in rats fed a high-fat diet.


Metabolism ◽  
2017 ◽  
Vol 69 ◽  
pp. 177-187 ◽  
Author(s):  
Takashi Honda ◽  
Masatoshi Ishigami ◽  
Fangqiong Luo ◽  
Ma Lingyun ◽  
Yoji Ishizu ◽  
...  

1982 ◽  
Vol 152 (1) ◽  
pp. 246-254
Author(s):  
Caroline S. Harwood ◽  
Ercole Canale-Parola

Spirochete MA-2, which is anaerobic, ferments glucose, forming acetate as a major product. The spirochete also ferments (but does not utilize as growth substrates) small amounts of l -leucine, l -isoleucine, and l -valine, forming the branched-chain fatty acids isovalerate, 2-methylbutyrate, and isobutyrate, respectively, as end products. Energy generated through the fermentation of these amino acids is utilized to prolong cell survival under conditions of growth substrate starvation. A branched-chain fatty acid kinase and two acetate kinase isozymes were resolved from spirochete MA-2 cell extracts. Kinase activity was followed by measuring the formation of acyl phosphate from fatty acid and ATP. The branched-chain fatty acid kinase was active with isobutyrate, 2-methylbutyrate, isovalerate, butyrate, valerate, or propionate as a substrate but not with acetate as a substrate. The acetate kinase isozymes were active with acetate and propionate as substrates but not with longer-chain fatty acids as substrates. The acetate kinase isozymes and the branched-chain fatty acid kinase differed in nucleoside triphosphate and cation specificities. Each acetate kinase isozyme had an apparent molecular weight of approximately 125,000, whereas the branched-chain fatty acid kinase had a molecular weight of approximately 76,000. These results show that spirochete MA-2 synthesizes a branched-chain fatty acid kinase specific for leucine, isoleucine, and valine fermentation. It is likely that a phosphate branched-chain amino acids is also synthesized by spirochete MA-2. Thus, in spirochete MA-2, physiological mechanisms have evolved which serve specifically to generate maintenance energy from branched-chain amino acids.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 529-529
Author(s):  
Chaitra Surugihalli ◽  
Vaishna Muralidaran ◽  
Kruti Patel ◽  
Tabitha Gregory ◽  
Nishanth Sunny

Abstract Objectives Elevated circulating branched-chain amino acids (BCAAs) during insulin resistance are strong predictors of type 2 diabetes mellitus onset. Defects in BCAA degradation are evident in several tissues during insulin resistance and non-alcoholic fatty liver disease (NAFLD). Furthermore, alterations in BCAA metabolism are associated with changes in several aspects lipid metabolism, including lipogenesis, ketogenesis and mitochondrial TCA cycle activity. Considering the crosstalk between BCAAs and lipid metabolism, we hypothesized that chronic supplementation of BCAAs will modulate hepatic insulin resistance and mitochondrial lipid oxidation during NAFLD. Methods Mice (C57BL/6N) were reared on either a low-fat (LF; 10% fat kcal), high-fat (HF; 60% fat kcal or high-fat diet supplemented with BCAA (HFBA; 150% BCAA) for 24 weeks. Metabolic profiling was conducted under fed or overnight fasted (14–16 hrs) conditions. A subset of overnight fasted mice from the HF and HFBA groups were subjected to hyperinsulinemic euglycemic clamps, following implantation of jugular vein catheters. Results Feeding HF and HFBA diets resulted in NAFLD. Circulating BCAAs were higher in ‘fed’ mice consuming HFBA diet (e.g., Valine, µM ± SEM; 311 ± 38 in HF, 432 ± 34 in HFBA, P ≤ 0.05). Overnight fasting significantly reduced BCAA levels in all groups, but the fasting levels of BCAAs remained similar between groups. Fed-to-fasted fold changes in blood glucose, serum insulin and c-peptide were higher in HFBA mice (P ≤ 0.05). Insulin stimulated suppression of glucose production (% ± SEM; HF = 38 ± 11, HFBA = 16 ± 16) was blunted in HFBA mice.  Furthermore, fed-to-fasted expression of hepatic genes involved in lipid oxidation, including LCAD, MCAD, PPARa and CPT1a were significantly higher (P ≤ 0.05) in the HFBA mice. Conclusions In summary, chronic BCAA supplementation induced hepatic lipid oxidation gene expression, without any apparent improvements in insulin sensitivity. In conclusion, while the induction of lipid oxidation by BCAAs could explain certain beneficial effects associated with their supplementation, the longer-term impact of the BCAAs on insulin sensitivity need to be further explored. Funding Sources National Institutes of Health (NIH) grant RO1-DK-112865


2021 ◽  
pp. 293-305
Author(s):  
M Holeček

The article shows that skeletal muscle plays a dominant role in the catabolism of branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) and the pathogenesis of their decreased concentrations in liver cirrhosis, increased concentrations in diabetes, and nonspecific alterations in disorders with signs of systemic inflammatory response syndrome (SIRS), such as burn injury and sepsis. The main role of skeletal muscle in BCAA catabolism is due to its mass and high activity of BCAA aminotransferase, which is absent in the liver. Decreased BCAA levels in liver cirrhosis are due to increased use of the BCAA as a donor of amino group to α-ketoglutarate for synthesis of glutamate, which in muscles acts as a substrate for ammonia detoxification to glutamine. Increased BCAA levels in diabetes are due to alterations in glycolysis, citric acid cycle, and fatty acid oxidation. Decreased glycolysis and citric cycle activity impair BCAA transamination to branched-chain keto acids (BCKAs) due to decreased supply of amino group acceptors (α-ketoglutarate, pyruvate, and oxaloacetate); increased fatty acid oxidation inhibits flux of BCKA through BCKA dehydrogenase due to increased supply of NADH and acyl-CoAs. Alterations in BCAA levels in disorders with SIRS are inconsistent due to contradictory effects of SIRS on muscles. Specifically, increased proteolysis and insulin resistance tend to increase BCAA levels, whereas activation of BCKA dehydrogenase and glutamine synthesis tend to decrease BCAA levels. The studies are needed to elucidate the role of alterations in BCAA metabolism and the effects of BCAA supplementation on the outcomes of specific diseases.


Sign in / Sign up

Export Citation Format

Share Document