scholarly journals The effects of water temperature, acoustic tag type, size at tagging, and surgeon experience on juvenile Chinook salmon (Oncorhynchus tshawytscha) tag retention and growth

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Rebecca R. Robinson ◽  
Jeremy Notch ◽  
Alex McHuron ◽  
Renae Logston ◽  
Tom Pham ◽  
...  

Abstract Background Acoustic telemetry is a widely used tool to study the movement and survival of juvenile fish and often requires a surgical procedure to implant the transmitter, which may impact overall fitness and survival following release. This is an important consideration when implementing large-scale acoustic telemetry projects aimed at estimating outmigration survival. The objective of this study was to examine the effects of water temperature, tag type, size at tagging, and surgeon experience on tag retention and growth rate of juvenile Chinook salmon (Oncorhynchus tshawytscha). We tagged 128 spring-run Chinook salmon (81–97 mm fork length, 5.2–10.0 g, tag burden 2.4–6.0%) with one of two types of acoustic transmitters; a shorter, heavier model (‘standard’) and a longer, lighter model (‘injectable’). Fish were tagged by either a novice or experienced surgeon. An additional 64 untagged fish served as a control group and were split between temperature treatments. Fish were reared in either cool (mean 13.4 °C) or warm (mean 17.8 °C) water for 60 days, prior to being euthanized, weighed and measured. Results Tag retention was similar for both transmitter types, but varied with water temperature, with significantly higher tag loss in the warm treatment (21.9%, 14 tags expelled), compared to the cold treatment (7.8%, 5 tags expelled). In the warm treatment, fish growth in the injectable tag group was significantly lower compared to the control group, and lower than the standard tag group, but not significantly lower. There was no significant difference between the control and standard tag groups for the warm treatment. In the cool temperature treatment, fish growth was not significantly different among any of the factors tested. Surgery time differed between surgeons; however, surgeon experience did not significantly affect tag shedding or growth. Conclusion Total tag loss was 14.8% over the 60-day trial, with higher and earlier loss in the warmer treatment. Tag length may be a more important factor than tag weight in smaller size fish. This suggests that tag shedding is a significant factor to consider when estimating survival, as the actual survival rate may be higher than estimates based solely on receiver detections.

2020 ◽  
Vol 9 (1) ◽  
pp. 18
Author(s):  
Dylan A Gravenhof ◽  
Michael E Barnes ◽  
Robert Hanten

Feral spawning fall Chinook salmon (Oncorhynchus tshawytscha) in Lake Oahe, South Dakota, are captured using a fish ladder and catch raceway at Whitlock Bay Spawning Station. The number of salmon that escaped the catch raceway and descended the fish ladder prior to spawning was unknown. During October 2017, all salmon that ascended the fish ladder at the spawning station were tagged. Tagged males remained in the catch raceway. Tagged females were moved to other secure raceways and used to estimate tag retention. Of the 383 tagged males, 159 (41.5%) were initially designated as escaped from the catch raceway. Tag loss in the females was 3.9%. Thus, the estimated male salmon escapement rate from the catch raceway was 37.6%. Male salmon remained in the catch raceway for one-to-three days before escaping. The escapement rate decreased over the month-long spawn, with nearly 60% of the males going back down the fish ladder in the first week of October, compared to less than 20% escapement by the final week. Such high rates of escapement from the spawning station may be negatively impacting the spawning efficiencies. Possible solutions include re-engineering of the fish ladder or daily removal of the salmon in the catch raceway to other more secure locations at the spawning station.


Author(s):  
Nicole M. Aha ◽  
Peter B. Moyle ◽  
Nann A. Fangue ◽  
Andrew L. Rypel ◽  
John R. Durand

AbstractLoss of estuarine and coastal habitats worldwide has reduced nursery habitat and function for diverse fishes, including juvenile Chinook salmon (Oncorhynchus tshawytscha). Underutilized off-channel habitats such as flooded rice fields and managed ponds present opportunities for improving rearing conditions and increasing habitat diversity along migratory corridors. While experiments in rice fields have shown enhanced growth rates of juvenile fishes, managed ponds are less studied. To evaluate the potential of these ponds as a nursery habitat, juvenile Chinook salmon (~ 2.8 g, 63 mm FL) were reared in cages in four contrasting locations within Suisun Marsh, a large wetland in the San Francisco Estuary. The locations included a natural tidal slough, a leveed tidal slough, and the inlet and outlet of a tidally muted managed pond established for waterfowl hunting. Fish growth rates differed significantly among locations, with the fastest growth occurring near the outlet in the managed pond. High zooplankton biomass at the managed pond outlet was the best correlate of salmon growth. Water temperatures in the managed pond were also cooler and less variable compared to sloughs, reducing thermal stress. The stress of low dissolved oxygen concentrations within the managed pond was likely mediated by high concentrations of zooplankton and favorable temperatures. Our findings suggest that muted tidal habitats in the San Francisco Estuary and elsewhere could be managed to promote growth and survival of juvenile salmon and other native fishes.


1995 ◽  
Vol 52 (4) ◽  
pp. 855-863 ◽  
Author(s):  
Peter Fritz Baker ◽  
Franklin K. Ligon ◽  
Terence P. Speed

Data from the U.S. Fish and Wildlife Service are used to investigate the relationship between water temperature and survival of hatchery-raised fall-run chinook salmon (Oncorhynchus tshawytscha) smolts migrating through the Sacramento – San Joaquin Delta of California. A formal statistical model is presented for the release of smolts marked with coded-wire tags (CWTs) in the lower Sacramento River and the subsequent recovery of marked smolts in midwater trawls in the Delta. This model treats survival as a logistic function of water temperature, and the release and recovery of different CWT groups as independent mark–recapture experiments. Iteratively reweighted least squares is used to fit the model to the data, and simulation is used to establish confidence intervals for the fitted parameters. A 95% confidence interval for the upper incipient lethal temperature, inferred from the trawl data by this method, is 23.01 ± 1.08 °C This is in good agreement with published experimental results obtained under controlled conditions (24.3 ± 0.1 and 25.1 ± 0.1 °C for chinook salmon acclimatized to 10 and 20 °C, respectively): this agreement has implications for the applicability of laboratory findings to natural systems.


1999 ◽  
Vol 56 (8) ◽  
pp. 1409-1419 ◽  
Author(s):  
Mary C Fabrizio ◽  
James D Nichols ◽  
James E Hines ◽  
Bruce L Swanson ◽  
Stephen T Schram

Data from mark-recapture studies are used to estimate population rates such as exploitation, survival, and growth. Many of these applications assume negligible tag loss, so tag shedding can be a significant problem. Various tag shedding models have been developed for use with data from double-tagging experiments, including models to estimate constant instantaneous rates, time-dependent rates, and type I and II shedding rates. In this study, we used conditional (on recaptures) multinomial models implemented using the program SURVIV (G.C. White. 1983. J. Wildl. Manage. 47: 716-728) to estimate tag shedding rates of lake trout (Salvelinus namaycush) and explore various potential sources of variation in these rates. We applied the models to data from several long-term double-tagging experiments with Lake Superior lake trout and estimated shedding rates for anchor tags in hatchery-reared and wild fish and for various tag types applied in these experiments. Estimates of annual tag retention rates for lake trout were fairly high (80-90%), but we found evidence (among wild fish only) that retention rates may be significantly lower in the first year due to type I losses. Annual retention rates for some tag types varied between male and female fish, but there was no consistent pattern across years. Our estimates of annual tag retention rates will be used in future studies of survival rates for these fish.


1983 ◽  
Vol 40 (3) ◽  
pp. 287-297 ◽  
Author(s):  
Karl K. English

Juvenile chinook salmon, Oncorhynchus tshawytscha, were raised in 90-m3 mesh enclosures in Saanich Inlet, B.C. The enclosures permitted ample water and zooplankton circulation while retaining 5–6 g juvenile salmon. Mean growth rate was 1.8% wet body weight/d over 6 wk. Weekly growth rates ranged from 3.9%/d while food was abundant, to −0.5%/d when food was scarce. Zooplankton concentration inside and outside enclosures without fish were not significantly different. Organisms associated with the sides of the enclosures (non-pelagic) were not a major contributor to the growth of the juvenile chinook. There was a strong relationship between the fish growth rates and the abundance of 1.4- to 4.5-mm zooplankton. Rates of successful search varied directly with the size and inherent contrast of a prey item. The minimum rate of successful search was 2.3 m3/h for salmon feeding on 1.4- to 4.5-mm zooplankton. This rate of successful search, while far greater than previously suspected, is still within the visual capabilities of the juvenile salmon. The enclosed salmon grew rapidly on zooplankton concentrations that were 1/1000 of those required to sustain similar growth rates in tank experiments.Key words: predator–prey relationship, planktivorous salmonid, marine, "in situ" enclosures, search efficiency


2018 ◽  
Vol 75 (12) ◽  
pp. 2271-2279 ◽  
Author(s):  
Mitchel G.E. Dender ◽  
Pauline M. Capelle ◽  
Oliver P. Love ◽  
Daniel D. Heath ◽  
John W. Heath ◽  
...  

The selection for a single organismal trait like growth in breeding programs of farmed aquaculture species can counterintuitively lead to lowered harvestable biomass. We outbred a domesticated aquaculture stock of Chinook salmon (Oncorhynchus tshawytscha (Walbaum in Artedi, 1792)) with seven wild stocks from British Columbia, Canada. We then examined how functionally related traits underlying energy management – diel variation in cortisol and foraging, social, and movement behaviours — predicted stock-level variation in growth during the freshwater life history stage, which is a performance metric under aquaculture selection. Outbreeding generated significant variation in diel cortisol secretion and behaviours across stocks, and these traits co-varied, suggesting tight integration despite hybridization. The coupling of nighttime cortisol exposure with the daytime behavioural phenotype was the strongest predictor of stock-level variation in body mass. Our results suggest that selection for an integrated phenotype rather than on a single mechanistic trait alone can generate the greatest effect on aquaculture fish growth under outbreeding practices. Furthermore, selecting for these traits at the stock level may increase efficiency of farming methods designed to consistently maximize fish performance on a large scale.


1994 ◽  
Vol 51 (8) ◽  
pp. 1780-1790 ◽  
Author(s):  
G. M. Kruzynski ◽  
I. K. Birtwell

The lumber protection antisapstain fungicide 2-(thiocyanomethylthio)benzothiazole (TCMTB) is leached by rainfall from treated wood awaiting shipment from outdoor lumber storage facilities. Stormwater discharges of this pesticide into estuarine reaches of the Fraser River, British Columbia, have raised concern about toxic effects on juvenile salmon rearing in this habitat. Simulated stream flow conditions were used to expose underyearling chinook salmon (Oncorhynchus tshawytscha) to a sublethal (10 μg∙L−1) concentration of TCMTB. Equal numbers of fin-clipped control and exposed fish were subsequently transferred to a vertically stratified (fresh over seawater) 15 500-L outdoor tank where they were challenged with the combined stressors of salinity and the presence of a marine predator (yellowtail rockfish (Sebastes flavidus)). After 5 d under these simulated estuarine conditions, survivors were enumerated. Chinook salmon that had been exposed to the toxicant were consumed in preference to the control group by a factor of 5.5:1. Inasmuch as predator avoidance represents the successful integration of appropriate biochemical, physiological, and behavioural responses, the predator bioassay provides an ecologically relevant technique to determine the significance to survival of the complex multifactorial interactions of individually "sublethal" stressors.


2016 ◽  
Vol 67 (7) ◽  
pp. 913 ◽  
Author(s):  
David G. Stormer ◽  
Francis Juanes

Fish otoliths are commonly used to estimate somatic growth rate, but this depends on the assumption that the otolith and body grow in direct proportion. Environmental conditions contribute to variability in somatic growth and can result in deviations from direct proportionality in the otolith-to-somatic size relationship. In the present study we examined the otolith-to-body size relationship for juvenile Chinook salmon (Oncorhynchus tshawytscha) subjected to simulated seasonal (summer, autumn and winter) water temperatures and feeding rations. The otolith-to-somatic size relationship became uncoupled during summer between fish subjected to the cool (15°C) and hot (21°C) water temperatures. A food ration effect was also observed during the summer, such that fish fed an unlimited ration had smaller otoliths than equivalently sized fish fed a limited ration. The effects of water temperature and ration disappeared by the end of autumn, indicating that a seasonal compensatory response occurred in the otolith-to-somatic size relationship after the extreme temperatures and food limitations were alleviated. In winter, this relationship became uncoupled again, but only between fish that were fed throughout the winter and fish that were starved during the 3-month experimental period. The effects of water temperature and rations on the otolith-to-somatic size relationship of juvenile Chinook salmon could have implications for accurately estimating somatic growth from otolith growth in natural populations and should be incorporated into back-calculation techniques.


Author(s):  
Ted Sommer ◽  
Brian Schreier ◽  
J. Louise Conrad ◽  
Lynn Takata ◽  
Bjarni Serup ◽  
...  

Large areas of California’s historic floodplain have been separated from adjacent river channels by levee construction, allowing the development of an extensive agricultural industry. Based on successful partnerships between agriculture and conservation groups to support migrating waterfowl, we examined whether seasonally flooded rice fields could be modified to provide off-channel rearing habitat for juvenile Chinook Salmon Oncorhynchus tshawytscha. During winter and spring of 2012-2017, we conducted a series of experiments in Yolo Bypass and other regions of California’s Central Valley using hatchery Chinook Salmon as a surrogate for wild Chinook Salmon, the management target for our project. Overall, we found that seasonally flooded fields are highly productive, resulting in significantly higher levels of zooplankton and high Chinook Salmon growth rates as compared to the adjacent Sacramento River. We found similar results for multiple geographical areas in the Central Valley, and in different cover types, such as non-rice crops and fallow areas. Although field substrate type did not detectably affect fish growth and survival, connectivity with upstream and downstream areas appeared to drive fish occupancy, because rearing young salmon were generally attracted to inflow in the fields, and not all of the fish successfully emigrated off the fields without efficient drainage. In general, we faced numerous logistic and environmental challenges to complete our research. For example, periodic unmanaged floods in the Yolo Bypass made it difficult to schedule and complete experiments. During severe drought conditions, we found that managed agricultural habitats produced low and variable salmon survival results, likely because of periodically high temperatures and concentrated avian predation. In addition, our project required substantial landowner time and effort to install and maintain experimental fields. Recent and future infrastructure improvements in Yolo Bypass could substantially improve options for experimental work and broaden efforts to enhance salmon habitat.


Sign in / Sign up

Export Citation Format

Share Document