scholarly journals Giovanni Baronzio's 'Crucifixion': analytical approaches and art historical considerations

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Svetlana Gasanova ◽  
Nikolas Bakirtzis ◽  
Dominique Levif-Martos ◽  
Sorin Hermon

Abstract The small panel of the ‘Crucifixion’ attributed to Giovanni (da Rimini) Baronzio is a perfect example of the artistic achievements of the so-called School of Rimini. Baronzio, active between 1320 and 1350, was one of the most important painters of a group of artists working in Rimini during the first half of the 14th-century whose work was heavily influenced by the work of Giotto di Bondone (1267–1337), characterized by Gothic and Byzantine influences. The panel, with an estimated date in the end of the 1320 s, represents a popular iconographic theme during this period and was painted in tempera and gold on wood. Non-invasive analytical approaches have revealed a rich history of interventions, re-touching and restorations, which allows for some interesting observations and considerations in regard to the work’s history. The applied analytical methods and the related art historical observations and interpretations are the focus of the present article. In order to avoid micro-sampling, a non-invasive methodological approach integrating spectroscopic (μ-X-ray fluorescence spectroscopy, Fourier transform infrared spectroscopy), imaging (UV, X-ray radiography, infrared reflectography) and digital microscopy techniques was applied. This study aimed at the identification of the work’s original materials and techniques, its state of preservation and the complex history of interventions. Results showed that while original materials of the painting conform with those used by artists in fourteenth century Renaissance Italy, there are multiple later interventions both as small-scale inpainting as well as extensive overpainting of various parts of the original Crucifixion composition. Careful consideration of these interventions can shed light to aspects of the panel’s history of preservation as well as on issues of stylistic or compositional ‘corrections’- always an interesting dimension of the changing perceptions of works of art through time.

Heritage ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 1165-1181
Author(s):  
Flavia Fiorillo ◽  
Lucia Burgio ◽  
Christine Slottved Kimbriel ◽  
Paola Ricciardi

This study presents the results of the technical investigation carried out on several English portrait miniatures painted in the 16th and 17th century by Nicholas Hilliard and Isaac Oliver, two of the most famous limners working at the Tudor and Stuart courts. The 23 objects chosen for the analysis, spanning almost the entire career of the two artists, belong to the collections of the Victoria and Albert Museum (London) and the Fitzwilliam Museum (Cambridge). A non-invasive scientific methodology, comprising of stereo and optical microscopies, Raman microscopy, and X-ray fluorescence spectroscopy, was required for the investigation of these small-scale and fragile objects. The palettes and working techniques of the two artists were characterised, focusing in particular on the examination of flesh tones, mouths, and eyes. These findings were also compared to the information written in the treatises on miniature painting circulating during the artists’ lifetime. By identifying the materials and techniques most widely employed by the two artists, this study provides information about similarities and differences in their working methods, which can help to understand their artistic practice as well as contribute to matters of attribution.


2016 ◽  
Vol 9 (17) ◽  
pp. 36-41 ◽  
Author(s):  
Ana-Maria Vutan ◽  
Erwin-Christian Lovasz ◽  
Mihaela Amarandei ◽  
Valentin Ciupe

Abstract In recent years there multiple studies have been carried out on early diagnosis of scoliosis on school and preschool children. The diagnosis and evaluation of scoliosis is done by carrying out X-rays. A protocol is implemented for tracking the evolution of a scoliosis which involves both clinical control and imaging (X-ray) every 6 months, until the end of the growth period of the child. Because investigations such as X-ray and CT, can have harmful effects on the child's growing body (recent studies have shown that X-ray affects the skin, eyes, hematopoietic tissue, gonads and may cause cancer), new methods for diagnosing and tracking the evolution in time were researched. The present paper tries to present the current methods used in the diagnosis and assessment of scoliosis evolution in time, pointing out the main advantages and disadvantages of each method. There are a few methods developed in recent years in Germany by Zebris Medical Gmbh (using mapping with ultrasonic digital equipment), in Canada by InSpeck (using three-dimensional mapping through digital image acquisition) but used on a small scale. The newly developed methods have the advantage of being non-invasive, painless, non-irradiating and they can be used regardless of health status or gender. Although medical technology has developed very rapidly in recent years, radiology remains the most common method of investigation used for scoliosis. Certainly, in the near future the methods presented in this paper could be used more widely, for the benefits arising from their use.


2012 ◽  
Vol 1374 ◽  
pp. 17-25
Author(s):  
Jocelyn Alcántara García ◽  
José Luis Ruvalcaba Sil ◽  
Marie Van der Meeren

ABSTRACTThe necessity of studying cultural heritage through non-invasive and non-destructive techniques has led to significant advances in the last decade. One of the most recent advancements in this theme in Mexico is the portable X-ray system SANDRA, which was used to study three manuscripts directly related to the history of “San Nicolás Coatepec”, Mexico. X-ray fluorescence was chosen as the suitable technique because it can provide a fast qualitative and quantitative multielemental high sensitivity analysis. The documents were examined globally, using imaging techniques with UV and IR lighting. This research evinced a change in the composition and evolution of writing materials (inks and pigments) and provided information concerning historical use of the documents and its actual legal value as a property document. It also stressed the need of spanning these results to an extensive research attaining other regions of Mexico, in order to fully understand the Mexican documents particularities, aging and deterioration. This, in turn, will provide not only historical material information but also an invaluable scoop to understand deterioration and conservation issues.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7595
Author(s):  
Francesco Armetta ◽  
Gabriella Chirco ◽  
Fabrizio Lo Celso ◽  
Veronica Ciaramitaro ◽  
Eugenio Caponetti ◽  
...  

The iconographic heritage is one of the treasures of Byzantine art that have enriched the south of Italy, and Sicily in particular, since the early 16th century. In this work, the investigations of a Sicilian Icon of Greek-Byzantine origin, the Madonna dell’Elemosina, is reported for the first time. The study was carried out using mainly non-invasive imaging techniques (photography in reflectance and grazing visible light, UV fluorescence, infrared reflectography, radiography, and computed tomography) and spectroscopic techniques (X-ray fluorescence and infrared spectroscopy). The identification of the constituent materials provides a decisive contribution to the correct historical and artistic placement of the Icon, a treasure of the Eastern European historical community in Sicily. Some hidden details have also been highlighted. Most importantly, the information obtained enables us to define its conservation state, the presence of foreign materials, and to direct its protection and restoration.


Heritage ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 2370-2383
Author(s):  
Alberghina ◽  
Schiavone ◽  
Greco ◽  
Saladino ◽  
Armetta ◽  
...  

The “Trionfo della morte” is a detached fresco painting dated at the half of the XV century. Its history is strictly connected with the history of Palermo and it is considered a symbol of the late Gothic period. Some small areas of the fresco were analyzed using a combination of non-invasive techniques and hand-held instrumentations (multispectral imaging analysis, X-ray fluorescence (XRF), and IR spectroscopy). The characterization of the nature of pigments used in its realization and restoration works was performed and some indications about its conservation state were obtained. More interestingly, some hidden details were revealed on the mysterious painting. They constitute additional evidence of the preciousness of the fresco.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 210
Author(s):  
Laure Dayet

Naturally occurring and deeply coloured iron-bearing materials were exploited very early on by human populations. The characterization of these materials has proven useful for addressing several archaeological issues, such as the study of technical behaviors, group mobility, and the reconstruction of cultural dynamics. However, this work poses some critical methodological questions. In this paper, we will review ochre studies by focusing on the analytical methods employed, the limits of non-invasive methods, as well as examples of some quality research addressing specific issues (raw material selection and provenience, heat treatment). We will then present a methodological approach that aims to identify the instrumental limits and the post-depositional alterations that significantly impact the results of the non-invasive analysis of cohesive ochre fragments from Diepkloof rock Shelter, South Africa. We used ochre materials recuperated in both archaeological and geological contexts, and we compared non-invasive surface analyses by XRD, scanning electron microscopy coupled with dispersive X-ray spectrometry (SEM-EDXS), and particle-induced X-ray emission (PIXE) with invasive analysis of powder pellets and sections from the same samples. We conclude that non-invasive SEM-EDXS and PIXE analyses provide non-representative results when the number of measurements is too low and that post-depositional alterations cause significant changes in the mineralogical and major element composition at the surface of archaeological pieces. Such biases, now identified, must be taken into account in future studies in order to propose a rigorous framework for developing archaeological inferences.


2020 ◽  
Author(s):  
Federica Pozzi ◽  
Julie Arslanoglu ◽  
Eleonora Nagy

Abstract The Whitney Museum of American Art, New York, owns one of the largest motorized works made by the renowned American artist Alexander Calder, titled Half-Circle, Quarter-Circle, and Sphere. Created in 1932, and acquired by the Whitney in 1969, this seminal work was featured in an iconic exhibition held in 2017 and entitled Calder: Hypermobility. Prior to that, the object underwent a series of treatments in order to repair its main kinetic elements that had become compromised during its lifetime. While the work’s mechanism retained its creator’s ingenious engineering solutions, the motor, urethane belts, plug, and electrical wires turned out to be neither original, nor authentic to the period. The appearance of the piece had also been altered, as most surfaces displayed multiple layers of overpainting and, thus, did not deliver the proper gloss, hue, and texture. These observations prompted a first, comprehensive scientific study to investigate the stratigraphy of Calder’s painted surfaces on Half-Circle, Quarter-Circle, and Sphere, with the final goal to comprehend and restore its original appearance through careful removal of the overpaint. Non-invasive X-ray fluorescence (XRF) analysis was carried out to gain initial insight into the paints’ composition. After that, extensive microscopic sampling was performed to assess the possible presence of original layers below the repainting throughout the object’s surface. Cross sections were examined with optical microscopy and analyzed with Fourier-transform infrared (FTIR) and Raman spectroscopies, as well as scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDS), in order to identify pigments, colorants, and extenders located in the various paint layers. Scrapings were also investigated with pyrolysis – gas chromatography / mass spectrometry (Py-GC/MS) for a detailed characterization of the binding media. Scientific analysis revealed, in selected white and red areas, up to eleven layers of overpaint composed of a wide array of modern materials, including pigments (titanium white in the form of tetragonal rutile and a variety of synthetic organic red pigments) and binders (alkyd or late formulations of enamels based on ortho-phthalic acid / phthalic anhydride, glycerol and pentaerythritol, polyvinyl acetate with various plasticizers, and acrylics). On the other hand, the identification of materials that were available in the early 1930s, such as zinc white, calcite, and gypsum, as well as traditional drying oil binders, supported the hypothesis that a layer of original paint may still be present in certain areas. In addition to shedding new light on the stratigraphy of Calder’s painted surfaces, this study informed the optimization of a treatment plan tailored for the safe removal of the overpaint to uncover the original layer, wherever present.


2020 ◽  
Author(s):  
Federica Pozzi ◽  
Julie Arslanoglu ◽  
Eleonora Nagy

Abstract The Whitney Museum of American Art, New York, owns one of the largest motorized works made by the renowned American artist Alexander Calder, titled Half-Circle, Quarter-Circle, and Sphere. Created in 1932, and acquired by the Whitney in 1969, this seminal work was featured in an iconic exhibition held in 2017 and entitled Calder: Hypermobility. Prior to that, the object underwent a series of treatments in order to repair its main kinetic elements that had become compromised during its lifetime. While the work’s mechanism retained its creator’s ingenious engineering solutions, the motor, urethane belts, plug, and electrical wires turned out to be neither original, nor authentic to the period. The appearance of the piece had also been altered, as most surfaces displayed multiple layers of overpainting and, thus, did not deliver the proper gloss, hue, and texture. These observations prompted a first, comprehensive scientific study to investigate the stratigraphy of Calder’s painted surfaces on Half-Circle, Quarter-Circle, and Sphere, with the final goal to comprehend and restore its original appearance through careful removal of the overpaint. Non-invasive X-ray fluorescence (XRF) analysis was carried out to gain initial insight into the paints’ composition. After that, extensive microscopic sampling was performed to assess the possible presence of original layers below the repainting throughout the object’s surface. Cross sections were examined with optical microscopy and analyzed with Fourier-transform infrared (FTIR) and Raman spectroscopies, as well as scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDS), in order to identify pigments, colorants, and extenders located in the various paint layers. Scrapings were also investigated with pyrolysis – gas chromatography / mass spectrometry (Py-GC/MS) for a detailed characterization of the binding media. Scientific analysis revealed, in selected white and red areas, up to eleven layers of overpaint composed of a wide array of modern materials, including pigments (titanium white in the form of tetragonal rutile and a variety of synthetic organic red pigments) and binders (alkyd or late formulations of enamels based on ortho-phthalic acid / phthalic anhydride, glycerol and pentaerythritol, polyvinyl acetate with various plasticizers, and acrylics). On the other hand, the identification of materials that were available in the early 1930s, such as zinc white, calcite, and gypsum, as well as traditional drying oil binders, supported the hypothesis that a layer of original paint may still be present in certain areas. In addition to shedding new light on the stratigraphy of Calder’s painted surfaces, this study informed the optimization of a treatment plan tailored for the safe removal of the overpaint to uncover the original layer, wherever present.


2020 ◽  
Author(s):  
Federica Pozzi ◽  
Julie Arslanoglu ◽  
Eleonora Nagy

Abstract The Whitney Museum of American Art, New York, owns one of the largest motorized works made by the renowned American artist Alexander Calder, titled Half-Circle, Quarter-Circle, and Sphere. Created in 1932, and acquired by the Whitney in 1969, this seminal work was featured in an iconic exhibition held in 2017 and entitled Calder: Hypermobility. Prior to that, the object underwent a series of treatments in order to repair its main kinetic elements that had become compromised during its lifetime. While the work’s mechanism retained its creator’s ingenious engineering solutions, the motor, urethane belts, plug, and electrical wires turned out to be neither original, nor authentic to the period. The appearance of the piece had also been altered, as most surfaces displayed multiple layers of overpainting and, thus, did not deliver the proper gloss, hue, and texture. These observations prompted a first, comprehensive scientific study to investigate the stratigraphy of Calder’s painted surfaces on Half-Circle, Quarter-Circle, and Sphere, with the final goal to comprehend and restore its original appearance through careful removal of the overpaint. Non-invasive X-ray fluorescence (XRF) analysis was carried out to gain initial insight into the paints’ composition. After that, extensive microscopic sampling was performed to assess the possible presence of original layers below the repainting throughout the object’s surface. Cross sections were examined with optical microscopy and analyzed with Fourier-transform infrared (FTIR) and Raman spectroscopies, as well as scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDS), in order to identify pigments, colorants, and extenders located in the various paint layers. Scrapings were also investigated with pyrolysis – gas chromatography / mass spectrometry (Py-GC/MS) for a detailed characterization of the binding media. Scientific analysis revealed, in selected white and red areas, up to eleven layers of overpaint composed of a wide array of modern materials, including pigments (titanium white in the form of tetragonal rutile and a variety of synthetic organic red pigments) and binders (alkyd or late formulations of enamels based on ortho-phthalic acid / phthalic anhydride, glycerol and pentaerythritol, polyvinyl acetate with various plasticizers, and acrylics). On the other hand, the identification of materials that were available in the early 1930s, such as zinc white, calcite, and gypsum, as well as traditional drying oil binders, supported the hypothesis that a layer of original paint may still be present in certain areas. In addition to shedding new light on the stratigraphy of Calder’s painted surfaces, this study informed the optimization of a treatment plan tailored for the safe removal of the overpaint to uncover the original layer, wherever present.


Author(s):  
H.W. Deckman ◽  
B.F. Flannery ◽  
J.H. Dunsmuir ◽  
K.D' Amico

We have developed a new X-ray microscope which produces complete three dimensional images of samples. The microscope operates by performing X-ray tomography with unprecedented resolution. Tomography is a non-invasive imaging technique that creates maps of the internal structure of samples from measurement of the attenuation of penetrating radiation. As conventionally practiced in medical Computed Tomography (CT), radiologists produce maps of bone and tissue structure in several planar sections that reveal features with 1mm resolution and 1% contrast. Microtomography extends the capability of CT in several ways. First, the resolution which approaches one micron, is one thousand times higher than that of the medical CT. Second, our approach acquires and analyses the data in a panoramic imaging format that directly produces three-dimensional maps in a series of contiguous stacked planes. Typical maps available today consist of three hundred planar sections each containing 512x512 pixels. Finally, and perhaps of most import scientifically, microtomography using a synchrotron X-ray source, allows us to generate maps of individual element.


Sign in / Sign up

Export Citation Format

Share Document