scholarly journals The predictive validity for mortality of the driving pressure and the mechanical power of ventilation

2020 ◽  
Vol 8 (S1) ◽  
Author(s):  
David M. P. van Meenen ◽  
◽  
Ary Serpa Neto ◽  
Frederique Paulus ◽  
Coen Merkies ◽  
...  

Abstract Background Outcome prediction in critically ill patients under invasive ventilation remains extremely challenging. The driving pressure (ΔP) and the mechanical power of ventilation (MP) are associated with patient-centered outcomes like mortality and duration of ventilation. The objective of this study was to assess the predictive validity for mortality of the ΔP and the MP at 24 h after start of invasive ventilation. Methods This is a post hoc analysis of an observational study in intensive care unit patients, restricted to critically ill patients receiving invasive ventilation for at least 24 h. The two exposures of interest were the modified ΔP and the MP at 24 h after start of invasive ventilation. The primary outcome was 90-day mortality; secondary outcomes were ICU and hospital mortality. The predictive validity was measured as incremental 90-day mortality beyond that predicted by the Acute Physiology, Age and Chronic Health Evaluation (APACHE) IV score and the Simplified Acute Physiology Score (SAPS) II. Results The analysis included 839 patients with a 90-day mortality of 42%. The median modified ΔP at 24 h was 15 [interquartile range 12 to 19] cm H2O; the median MP at 24 h was 206 [interquartile range 145 to 298] 10−3 J/min/kg predicted body weight (PBW). Both parameters were associated with 90-day mortality (odds ratio (OR) for 1 cm H2O increase in the modified ΔP, 1.05 [95% confidence interval (CI) 1.03 to 1.08]; P < 0.001; OR for 100 10−3 J/min/kg PBW increase in the MP, 1.20 [95% CI 1.09 to 1.33]; P < 0.001). Area under the ROC for 90-day mortality of the modified ΔP and the MP were 0.70 [95% CI 0.66 to 0.74] and 0.69 [95% CI 0.65 to 0.73], which was neither different from that of the APACHE IV score nor that of the SAPS II. Conclusions In adult patients under invasive ventilation, the modified ΔP and the MP at 24 h are associated with 90 day mortality. Neither the modified ΔP nor the MP at 24 h has predictive validity beyond the APACHE IV score and the SAPS II.

2021 ◽  
Author(s):  
Yanhong Zhu ◽  
Wenyong Peng ◽  
Shuai Zhen ◽  
Xiaofeng Jiang

Abstract Background: Mechanical power (MP), defined as the amount of energy produced by mechanical ventilation and released into the respiratory system, has long been considered a critical factor in the pathogenesis of ventilator-induced lung injury. However, our knowledge suggests that the effects of MP may be proportional to their involvement in total lung function size. Therefore, MP normalized to predicted body weight (norMP) should be greater than absolute MP value. The objective of this research is to determine the connection between norMP and mortality in critically ill patients who have been on invasive ventilation for at least 48 hours.Methods: This is a study of data stored in the databases of the MIMIC–III, which contains data of critically ill patients for over 50,000. The study involved critically ill patients who had been on invasive ventilation for at least 48 hours. norMP was the relevant exposure. The major endpoint was ICU mortality, the secondary endpoints were 30-day, 90-day mortality; ICU length of stay, the number of ventilator-free days at day 28.Result: The study involved a total of 1301 critically ill patients. This study revealed that norMP was correlated with ICU mortality [OR per quartile increase 1.20 (95% CI 1.07–1.35), p = 0.009]. Similarly, norMP was correlated with ventilator-free days at day 28, ICU length of stay. In the subgroup analysis, high norMP was associated with ICU mortality whether low or high Vt (OR 1.22, 95% CI 1.01–1.47, p = 0.040; OR 1.28, 95% CI 1.06–1.54, p = 0.011, respectively). But high norMP was associated with ICU mortality only in low PIP (OR 1.18, 95% CI 1.01–1.37, p = 0.034)Conclusion: Our findings indicate that higher norMP is independently linked with elevated ICU mortality and various other clinical findings in critically ill patients with a minimum of 48 hours of invasive ventilation.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanhong Zhu ◽  
Wenyong Peng ◽  
Shuai Zhen ◽  
Xiaofeng Jiang

Abstract Background Mechanical power (MP), defined as the amount of energy produced by mechanical ventilation and released into the respiratory system, was reportedly a determining factor in the pathogenesis of ventilator-induced lung injury. However, previous studies suggest that the effects of MP were proportional to their involvement in the total lung function size. Therefore, MP normalized to the predicted body weight (norMP) should outperform the absolute MP value. The objective of this research is to determine the connection between norMP and mortality in critically ill patients who have been on invasive ventilation for at least 48 h. Methods This is a study of data stored in the databases of the MIMIC–III, which contains data of critically ill patients for over 50,000. The study involved critically ill patients who had been on invasive ventilation for at least 48 h. norMP was the relevant exposure. The major endpoint was ICU mortality, the secondary endpoints were 30-day, 90-day mortality; ICU length of stay, the number of ventilator-free days at day 28. Result The study involved a total of 1301 critically ill patients. This study revealed that norMP was correlated with ICU mortality [OR per quartile increase 1.33 (95% CI 1.16–1.52), p <  0.001]. Similarly, norMP was correlated with ventilator-free days at day 28, ICU length of stay. In the subgroup analysis, high norMP was associated with ICU mortality whether low or high Vt (OR 1.31, 95% CI 1.09–1.57, p = 0.004; OR 1.32, 95% CI 1.08–1.62, p = 0.008, respectively). But high norMP was associated with ICU mortality only in low PIP (OR 1.18, 95% CI 1.01–1.38, p = 0.034). Conclusion Our findings indicate that higher norMP is independently linked with elevated ICU mortality and various other clinical findings in critically ill patients with a minimum of 48 h of invasive ventilation.


2020 ◽  
Vol 8 (S1) ◽  
Author(s):  
Friso M. de Beer ◽  
◽  
Luuk Wieske ◽  
Gerard van Mierlo ◽  
Diana Wouters ◽  
...  

Abstract Background Mechanical ventilation can induce or even worsen lung injury, at least in part via overdistension caused by too large volumes or too high pressures. The complement system has been suggested to play a causative role in ventilator-induced lung injury. Aims and methods This was a single-center prospective study investigating associations between pulmonary levels of complement activation products and two ventilator settings, tidal volume (VT) and driving pressure (ΔP), in critically ill patients under invasive ventilation. A miniature bronchoalveolar lavage (BAL) was performed for determination of pulmonary levels of C5a, C3b/c, and C4b/c. The primary endpoint was the correlation between BAL fluid (BALF) levels of C5a and VT and ΔP. Levels of complement activation products were also compared between patients with and without ARDS or with and without pneumonia. Results Seventy-two patients were included. Median time from start of invasive ventilation till BAL was 27 [19 to 34] hours. Median VT and ΔP before BAL were 6.7 [IQR 6.1 to 7.6] ml/kg predicted bodyweight (PBW) and 15 [IQR 11 to 18] cm H2O, respectively. BALF levels of C5a, C3b/c and C4b/c were neither different between patients with or without ARDS, nor between patients with or without pneumonia. BALF levels of C5a, and also C3b/c and C4b/c, did not correlate with VT and ΔP. Median BALF levels of C5a, C3b/c, and C4b/c, and the effects of VT and ΔP on those levels, were not different between patients with or without ARDS, and in patients with or without pneumonia. Conclusion In this cohort of critically ill patients under invasive ventilation, pulmonary levels of complement activation products were independent of the size of VT and the level of ΔP. The associations were not different for patients with ARDS or with pneumonia. Pulmonary complement activation does not seem to play a major role in VILI, and not even in lung injury per se, in critically ill patients under invasive ventilation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christina Scharf ◽  
Ines Schroeder ◽  
Michael Paal ◽  
Martin Winkels ◽  
Michael Irlbeck ◽  
...  

Abstract Background A cytokine storm is life threatening for critically ill patients and is mainly caused by sepsis or severe trauma. In combination with supportive therapy, the cytokine adsorber Cytosorb® (CS) is increasingly used for the treatment of cytokine storm. However, it is questionable whether its use is actually beneficial in these patients. Methods Patients with an interleukin-6 (IL-6) > 10,000 pg/ml were retrospectively included between October 2014 and May 2020 and were divided into two groups (group 1: CS therapy; group 2: no CS therapy). Inclusion criteria were a regularly measured IL-6 and, for patients allocated to group 1, CS therapy for at least 90 min. A propensity score (PS) matching analysis with significant baseline differences as predictors (Simplified Acute Physiology Score (SAPS) II, extracorporeal membrane oxygenation, renal replacement therapy, IL-6, lactate and norepinephrine demand) was performed to compare both groups (adjustment tolerance: < 0.05; standardization tolerance: < 10%). U-test and Fisher’s-test were used for independent variables and the Wilcoxon test was used for dependent variables. Results In total, 143 patients were included in the initial evaluation (group 1: 38; group 2: 105). Nineteen comparable pairings could be formed (mean initial IL-6: 58,385 vs. 59,812 pg/ml; mean SAPS II: 77 vs. 75). There was a significant reduction in IL-6 in patients with (p < 0.001) and without CS treatment (p = 0.005). However, there was no significant difference (p = 0.708) in the median relative reduction in both groups (89% vs. 80%). Furthermore, there was no significant difference in the relative change in C-reactive protein, lactate, or norepinephrine demand in either group and the in-hospital mortality was similar between groups (73.7%). Conclusion Our study showed no difference in IL-6 reduction, hemodynamic stabilization, or mortality in patients with Cytosorb® treatment compared to a matched patient population.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kevin Roedl ◽  
Dominik Jarczak ◽  
Andreas Drolz ◽  
Dominic Wichmann ◽  
Olaf Boenisch ◽  
...  

Abstract Background SARS-CoV-2 caused a pandemic and global threat for human health. Presence of liver injury was commonly reported in patients with coronavirus disease 2019 (COVID-19). However, reports on severe liver dysfunction (SLD) in critically ill with COVID-19 are lacking. We evaluated the occurrence, clinical characteristics and outcome of SLD in critically ill patients with COVID-19. Methods Clinical course and laboratory was analyzed from all patients with confirmed COVID-19 admitted to ICU of the university hospital. SLD was defined as: bilirubin ≥ 2 mg/dl or elevation of aminotransferase levels (> 20-fold ULN). Results 72 critically ill patients were identified, 22 (31%) patients developed SLD. Presenting characteristics including age, gender, comorbidities as well as clinical presentation regarding COVID-19 overlapped substantially in both groups. Patients with SLD had more severe respiratory failure (paO2/FiO2: 82 (58–114) vs. 117 (83–155); p < 0.05). Thus, required more frequently mechanical ventilation (95% vs. 64%; p < 0.01), rescue therapies (ECMO) (27% vs. 12%; p = 0.106), vasopressor (95% vs. 72%; p < 0.05) and renal replacement therapy (86% vs. 30%; p < 0.001). Severity of illness was significantly higher (SAPS II: 48 (39–52) vs. 40 (32–45); p < 0.01). Patients with SLD and without presented viremic during ICU stay in 68% and 34%, respectively (p = 0.002). Occurrence of SLD was independently associated with presence of viremia [OR 6.359; 95% CI 1.336–30.253; p < 0.05] and severity of illness (SAPS II) [OR 1.078; 95% CI 1.004–1.157; p < 0.05]. Mortality was high in patients with SLD compared to other patients (68% vs. 16%, p < 0.001). After adjustment for confounders, SLD was independently associated with mortality [HR3.347; 95% CI 1.401–7.999; p < 0.01]. Conclusion One-third of critically ill patients with COVID-19 suffer from SLD, which is associated with high mortality. Occurrence of viremia and severity of illness seem to contribute to occurrence of SLD and underline the multifactorial cause.


Author(s):  
Erfan Kazemi ◽  
Reihane Soldoozi Nejat ◽  
Fatemeh Ashkan ◽  
Hossein Sheibani

Abstract Background Abnormal laboratory findings are common in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The aim of this systematic review was to investigate the effect of the level of some laboratory factors (C-reactive protein (CRP), creatinine, leukocyte count, hemoglobin, and platelet count) on the severity and outcome of coronavirus disease 2019 (COVID-19). Methods We searched PubMed, Web of Science, Scopus, and Google Scholar. We collected the articles published before May 26, 2020. We gathered the laboratory factors in groups of patients with COVID-19, and studied the relation between level of these factors with severity and outcome of the disease. Results Mean CRP level, creatinine, hemoglobin, and the leukocytes count in the critically ill patients were significantly higher than those of the other groups (non-critical patients); mean CRP = 54.81 mg/l, mean creatinine = 86.82 μmol/l, mean hemoglobin = 144.05 g/l, and mean leukocyte count = 7.41 × 109. The lymphocyte count was higher in patients with mild/moderate disease (mean: 1.32 × 109) and in the invasive ventilation group (mean value of 0.72 × 109), but it was considerably lower than those of the other two groups. The results showed that the platelet count was higher in critically ill patients (mean value of 205.96 × 109). However, the amount was lower in the invasive ventilation group compared with the other groups (mean level = 185.67 × 109). Conclusion With increasing disease severity, the leukocyte count and the level of CRP increase significantly and the lymphocyte count decreases. There seems to be a significant relation between platelet level, hemoglobin, and creatinine level with severity of the disease. However, more studies are required to confirm this.


2020 ◽  
Vol 8 (S1) ◽  
Author(s):  
Sophia van der Hoeven ◽  
◽  
Lorenzo Ball ◽  
Federico Constantino ◽  
David M. van Meenen ◽  
...  

Abstract Background Accumulated airway secretions in the endotracheal tube increase work of breathing and may favor airway colonization eventually leading to pneumonia. The aim of this preplanned substudy of the ‘Preventive Nebulization of Mucolytic Agents and Bronchodilating Drugs in Intubated and Ventilated Intensive Care Unit Patients trial’ (NEBULAE) was to compare the effect of routine vs on-demand nebulization of acetylcysteine with salbutamol on accumulation of secretions in endotracheal tubes in critically ill patients. Results In this single-center substudy of a national multicenter trial, patients were randomized to a strategy of routine nebulizations of acetylcysteine with salbutamol every 6 h until end of invasive ventilation, or to a strategy with on-demand nebulizations of acetylcysteine or salbutamol applied on strict clinical indications only. The primary endpoint, the maximum reduction in cross-sectional area (CSA) of the endotracheal tube was assessed with high-resolution computed tomography. Endotracheal tubes were collected from 72 patients, 36 from patients randomized to the routine nebulization strategy and 36 of patients randomized to the on-demand nebulization strategy. The maximum cross-sectional area (CSA) of the endotracheal tube was median 12 [6 to 15]% in tubes obtained from patients in the routine nebulization group, not different from median 9 [6 to 14]% in tubes obtained from patients in the on-demand nebulization group (P = 0.33). Conclusion In adult critically ill patients under invasive ventilation, routine nebulization of mucolytics and bronchodilators did not affect accumulation of airway secretions in the endotracheal tube. Trial registration Clinicaltrials.gov Identifier: NCT02159196


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Angelina Grest ◽  
Judith Kurmann ◽  
Markus Müller ◽  
Victor Jeger ◽  
Bernard Krüger ◽  
...  

Purpose. The aim of this retrospective study was to assess the haemodynamic adverse effects of clonidine and dexmedetomidine in critically ill patients after cardiac surgery. Methods. 2769 patients were screened during the 30-month study period. Heart rate (HR), mean arterial pressure (MAP), and norepinephrine requirements were assessed 3-hourly during the first 12 hours of the continuous drug infusion. Results are given as median (interquartile range) or numbers (percentages). Results. Patients receiving clonidine (n = 193) were younger (66 (57–73) vs 70 (63–77) years, p=0.003) and had a lower SAPS II (35 (27–48) vs 41 (31–54), p=0.008) compared with patients receiving dexmedetomidine (n = 141). At the start of the drug infusion, HR (90 (75–100) vs 90 (80–105) bpm, p=0.028), MAP (70 (65–80) vs 70 (65–75) mmHg, p=0.093), and norepinephrine (0.05 (0.00–0.11) vs 0.12 (0.03–0.19) mcg/kg/min, p<0.001) were recorded in patients with clonidine and dexmedetomidine. Bradycardia (HR < 60 bpm) developed in 7.8% with clonidine and 5.7% with dexmedetomidine (p=0.51). Between baseline and 12 hours, norepinephrine remained stable in the clonidine group (0.00 (−0.04–0.02) mcg/kg/min) and decreased in the dexmedetomidine group (−0.03 (−0.10–0.02) mcg/kg/min, p=0.007). Conclusions. Dexmedetomidine and the low-cost drug clonidine can both be used safely in selected patients after cardiac surgery.


Sign in / Sign up

Export Citation Format

Share Document